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Abstract 

Nonlinear Acoustics in Underwater and Biomedical Applications: 

Array Performance Degradation and Time Reversal Invariance 

by Ibrahim M. Hallaj 

.   Chair of Supervisory Committee 

Professor Robert P. Porter 
Electrical Engineering 

This dissertation describes a model for acoustic propagation in inhorhogeneous fluid 

media, and explores the focusing by arrays onto targets under various conditions. The 

work explores the use of arrays, such as the phase-conjugate array, for underwater 

and biomedical applications. Aspects of propagation and phasing which can lead to 

reduced focusing effectiveness are described. Among the most important debilitating 

effects studied here are medium absorption, medium nonlinearity, and imperfect initial 

phasing of the signals at the array elements. 

Acoustic wave propagation in fluid media is modeled by obtaining a wave equation 

from the basic equations of fluid mechanics, and some description of the propagating 

environment and its boundaries. The acoustic wave equation couples the wave motion 

to the medium's scalar and vector time-varying properties. Bulk velocity, sound speed, 

density, attenuation coefficient and nonlinearity parameter are all generally functions 

of three-dimensional space as well as time in an inhomogeneous medium. 

The present study uses analysis and numerical simulations to study the behavior 

of the acoustic focusing systems described. The finite-difference time-domain (FDTD) 



method is used to solve the wave equation for some applications in underwater and 

biomedical acoustics. The nature of the propagation of acoustic disturbances in space 

and time in a continuous medium suggest the numerical methods used to solve them 

here. The acoustic pressure disturbances are communicated along spatial and tem- 

poral grids in a natural fashion. The strengths and weaknesses of the FDTD method 

are discussed. 

Beyond modeling and simulating the propagation and focusing of acoustic fields, 

this dissertation looks at the heating effects of focused ultrasound in an absorbing 

thermoviscous fluid. The application considered is the deposition of ultrasonic en- 

ergy onto target tissue regions with the purpose of affecting therapeutic heating for 

hyperthermia. The acoustic model and a thermal model for tissue are coupled to 

solve for transient and steady temperature profiles in tissue-like media. Conclusions 

are presented on the effect of absorption, nonlinearity, and temperature-dependent 

medium properties. 
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Chapter 1 

INTRODUCTION 

The focusing of intense acoustic beams onto targets can be used to advantage in 

military, industrial, and biomedical applications. It may seem ironic that the utility 

of the intense acoustic pressures generated by such devices is often in its useful de- 

structive abilities. For example, focused sound may provide fast, safe minesweeping 

capability for ships at sea. Focused ultrasonic fields have been successfully used to 

break off oxidants and contaminants from semiconductor surfaces without the use of 

solvents or direct contact by abrasives. Further, the heat generated near regions of 

focused ultrasound has found application in welding plastic parts in industry, and in 

treatment of deep-seated tumors in tissue. In all of these examples focused sound was 

used to cause physical change to the region of application, most commonly causing 

permanent destruction of the material at the focus. This aspect is shared with lasers 

in that intense laser beams are often used in industrial, medical, and military appli- 

cations to destroy objects in the beam. Contrast this usage with the nondestructive 

diagnostic and imaging uses of sound and laser light which are the most common 

usage for these beams at low intensities. 

This study explores the propagation of intense sound beams from focused sources 

to propagate intense beams to a region of interest. Applications to focusing from phase 

conjugate arrays, and biomedical use for therapeutic tissue heating are considered. 

The emphasis of the study is on the physics of the wave propagation, the debilitating 

effects on focusing ability which may arise, and the modeling and behavior of tissue- 



like media near the focus of ultrasonic beams. 

In Chapter 2 a model for acoustic wave propagation will be developed. The model 

is used to study the motion of ultrasonic pulses propagating in inhomogeneous fluid 

media. First we consider wave motion in a quiescent, inhomogeneous, lossy, nonlin- 

ear thermoviscous fluid medium. Next, propagation in non-quiescent (time-varying) 

media is considered. Since the propagation can be very complicated, computer sim- 

ulations are used to study the behavior of the acoustic field, especially near the focal 

zone. The finite-difference time-domain (FDTD) method for solving the wave equa- 

tion is briefly outlined at the end of the chapter to facilitate the presentation of some 

numerical examples from the model. 

Chapter 3 presents formal derivations for the field due to point sources using the 

Green's function. The analysis is extended to arrays of small sources and extended 

sources in free space. The superposition of linear acoustic fields is used to illustrate 

the need for geometric focusing and phasing to form intense foci. A discussion of 

beamsteering and some common configurations for focused acoustic sources are pre- 

sented as well. 

Chapter 4 considers time reversal or phase conjugation arrays. Such arrays have 

been shown to have remarkable abilities to automatically compensate for the effects 

of complicated propagation paths, scattering, and multipath effects in fluid channels. 

In this study we demonstrate analytically and through numerical experiments that 

the robustness of time reversal arrays for retrofocusing holds even under nonlinear 

propagation conditions. The caveat to this last statement is that the propagation 

medium must be nearly lossless, and no modification to the signal other than time 

reversal may be applied at the array. The effect of various debilitating factors on the 

ability of such arrays to form an intense focus at a target location is studied. For 

high-intensity purposes, absorption, amplification at the array elements, and error 

in phasing will compromise the time reversal invariance necessary for effective time 

reversal focusing.   All of these effects act to degrade the focusing of time reversal 



systems, and are shown to be especially detrimental for finite-amplitude propagation. 

An effort is made to elucidate the effects of individual propagation conditions on the 

propagation and array focusing, so minimizing the number of simultaneously acting 

phenomena will minimize confusion as to cause and effect. So for example, in studies 

investigating the effect of phase error on the focusing performance, the absorption 

and nonlinearity are suppressed so as not to cloud the issues being studied in that 

example. 

In Chapter 5 the effects of focused ultrasound in tissue are studied. A thermal 

model for tissue-like media, based on the bioheat equation, is coupled to the pre- 

viously described acoustic model. A heat equation is solved where the deposition 

of thermal energy into the tissue from focused ultrasound is countered by conduc- 

tion and perfusion heat losses. It is known that material properties such as sound 

speed and absorption coefficient in biological media are temperature-dependent. The 

effect of the acoustic heating on the thermal and acoustic properties of tissue will 

have a feedback effect on the sound field and rate of heat deposition. The effect of 

time/temperature-varying sound speed and absorption coefficient is studied in sim- 

ulations, using published laboratory data for these parameters as a function of tem- 

perature. It is found that the sharp increase in absorption coefficient as a heating 

treatment progresses will have an important effect on the rest of the treatment by 

accelerating the heating near the focal zone. 

Each chapter is individually summarized at its end, but Chapter 6 ties the disser- 

tation together by presenting conclusions from the findings of the whole study in a 

coherent fashion. Chapter 6 also describes some outstanding questions not addressed 

in this dissertation, and proposes some directions for extending this work. Some of 

the most important points not covered in the present study are the role of moving 

medium in time reversal systems, the role of time-varying properties of tissue other 

than sound speed and attenuation (for example, density, nonlinearity coefficient, vis- 

cosity), and the onset of phase change to treated tissue following the denaturing, or 



cavitation inception. Only the phase errors in the initial phasing of time reversal 

systems were studied. Phase errors in the waveforms themselves can also be expected 

in real systems. Given the present interest in the ability of forming high-intensity foci 

using time reversal arrays, the time reversal systems are evaluated here based on the 

intensity of the focal spot generated, not on the fidelity of reproduction of the initial 

waveforms. This may not be the preferred judgement criterion in some of the "softer" 

uses of time reversal arrays, such as communication or imaging. 

The present study relies heavily on numerical simulations. While all the algo- 

rithms and computer codes used in this study are original, the numerical methods 

used are not new. Hence the description of the numerical techniques used is dis- 

cussed in the Appendix rather than in the body of the dissertation. Some comments 

regarding the simulation graphical output are due: to simplify reproduction of this 

dissertation, gray-scale coloring was used for all figures. Unfortunately, this compro- 

mised some of the detail visible in the original color output. A few colored versions 

of this dissertation were produced, but the official document remains in black and 

white. Also, some insight was gained by generating and viewing animated sequences 

of acoustic pulse propagation, especially for time reversal and therapeutic ultrasound 

pulse propagation. These too remain archived with the author and could not be in- 

cluded in the official dissertation. The simulations presented were carried out on the 

Silicon Graphics (Origin 2000) parallel computer at Boston University using the Cray 

parallellizing FORTRAN-77 compiler. Postprocessing was done on the Origin 2000 

and Apple Macintosh computers. No Intel Pentium chips were used in this study. 



Chapter 2 

MODELLING THE ACOUSTIC WAVE 

The first step to simulating an acoustic field is to decide on a model for sound 

propagation. This chapter derives the model wave equation from the basic equations 

of fluid mechanics and thermodynamics for a thermoviscous fluid. This study concerns 

itself with the compressional acoustic wave action in fluid media. The existence or 

generation of shear waves is not considered. The wave equation of acoustics can be 

derived from the fundamental equations of fluid mechanics and thermodynamics. In 

order to retain the nonlinear behaviour of the wave, it is necessary to retain the 

nonlinear terms which arise in the derivations. We keep terms up to second order in 

this study, a regime referred to as finite-amplitude acoustics. Keeping terms of higher 

than second order results in much more complicated expressions. 

2.1     The Basic Equations of Fluid Mechanics and State in Quiescent 

Fluids 

The equations used to derive the wave equation in fluids are Euler's equations (con- 

tinuity and momentum), and an equation of state relating pressure to density and 

entropy. The derivations in this section apply to quiescent fluids1, the case of fluids 

with time-varying background properties will be derived later in this chapter. The 

continuity equation expresses the conservation of mass in a fluid volume, and is given 

1 Defined by Pierce [61] p. 14 as a fluid whose background properties are not dependent on time, 
and whose background velocity, UQ, is zero. 



by Kundu [51] as 

^ + V-(pu) = 0, (2.1) 

where the density, p, and the velocity, u, are both functions of space and time. 

Acoustic disturbances are considered to be small perturbations to the background 

state of the fluid, and the density, velocity, and pressure are written 

p   =   po + p', (2-2) 

u   =   u0 + u' (2.3) 

P   =   Po + p'- (2-4) 

The quantities with the subscript zero refer to the fluid's background (ambient) prop- 

erties and are only functions of space, while the quantities having the superscript 

prime refer to perturbations from the background state due to the acoustic wave, and 

are generally functions of both space and time. Since u0 = 0 in all of the cases treated 

in this study, u = u'. 

Expanding (2.1) and using (2.2) we obtain the continuity equation for a quiescent 

inhomogeneous fluid, 

?£- + PoW • u' = -VV • u' - u' • Vp' - u' • V/90. (2.5) 
ot 

In a homogeneous medium, the last term in (2.5) would be dropped. 

The next piece of fluid mechanics we will use to derive the wave equation is the 

momentum equation, 

p^ + Vp-FB-(\ + 2p) V(V • u) = 0, (2.6) 

where p' is the acoustic pressure, t is time, and p and A are the viscous Lame coeffi- 

cients. D denotes a material derivative, 

R = l + u-V. (2.7) 
Dt     d* y    } 



The body force FB and the gradient of the background pressure, Vpo cancel, since in 

the absence of sound, p' = u = 0, and so (2.6) is merely 

Vpo = Fs. (2.8) 

A question may arise as to the importance of each term in the equations of fluid 

mechanics to the overall behavior of the fluid. To answer this question and to elucidate 

more of the nature of the acoustics we use an ordering scheme that clarifies which 

terms are small compared to the others. In this study terms of the order three and 

higher are ignored. 

2.2    On the Ordering of Terms 

We shall describe the basis for ordering the terms encountered throughout our analy- 

sis. We assume that background parameters (e.g. po, po, CQ) are of order one, denoted 

by 0(1). Disturbances due to the acoustic waves are considered to be order epsilon, 

0(e), and are much smaller than the background values and 0(1) terms. These 

include p'', u', p', etc. The viscous (Lame) coefficients are also considered small com- 

pared to the 0(1) terms, and are first order terms denoted by ö(rf). Differential 

changes in background parameters (e.g. ^ and V^o) are assumed to be 0(C) per- 

turbations, where e,r) and ( are all similarly-small and much less than one. Table 1.1 

summarizes the ordering scheme used in this study. Note that the product of two first 

order terms is a second order term, thus allowing the substitution of first order terms 

into relations that are second order while maintaining second order accuracy. Note 

the distinction between the terms "order one", 0(1), and "first order", ö(t). Order 

one terms could be called "zeroth order" terms. Some examples using the ordering 

scheme described are 



Table 2.1:  The ordering scheme used in this study (n > 0, m > 1).   e, rj and ( are 
much smaller than 1. s represents space or time in the differentials. 

9"p'm gnum 

dsn 
9Vm 

9s" 
9"p™ 
dsn 

dnc^ 
dsn 

dnKm 

dsn 
dnßm 

dsn dsn 

ö(em) ö(em) 0{em) o(Cn) 0(C) 0(r/n+m) o(nn+m) 

-1-z = 0(1) 0(14) = 0{1),    (zeroth order) 
Poc0 

3^1 d3p> 

dt3 

d2
P'2 

dt2 

ydcp 

dt P 

= 0(13) 0(e) = 0(e),     (first order) 

= ö(l2) ö(e2) = ö(e2),     (second order) 

= ö(e2) 0(C) = 0(e2 C)    (third order). 

(2.9) 

Manipulation of second order relations such as (2.5) is possible using the first order 

relations described in [13, 68] while maintaining second order accuracy. For our pur- 

poses we use the first order linearized relations for mass and momentum conservation, 

-POV • u', 
dt 

du' 

(2.10) 

(2.11) 

as well as a first order relation describing the dependence of density fluctuation on 

the background sound speed and the acoustic pressure, 

/       1   / (2.12) 

These relations allow us to rewrite the right hand side of (2.5) to obtain a more useful 

form of the continuity equation, 

dp' „     ,        1   dp2 

dt p0% dt 
(2.13) 

which will be used to derive the acoustic wave equation. 



2.3     The Absorbing Nonlinear Wave Equation 

A detailed treatment of the wave equation for nonlinear acoustics in fluids can be 

found in Hamilton and Blackstock [42]. To obtain the acoustic wave equation, the 

time derivative of equation (2.13), 

#V d^        A 1      d2P'2 V7 dU' ,0 1A\ 
W + p0m{v-u) = ^0^-Vp°-lH' (2-14) 

is subtracted from the divergence of equation (2.6) 

PoV • ^ + ^ • Vp0 + V2/ = (A + 2//)V2(V • u') + V(V • u') • V(A + 2p), 

(2.15) 

to yield 

^ - w + % ■ v"° -(A+2")v2(v •u>) + ^w - v'° • % = "■ ^ 
We return to the first order relations (2.10) and (2.11), and instead of (2.12) we use 

the state equation and entropy equations to second order, derived in Hamilton and 

Blackstock [42] 

,/ = £__!_ f_L_J_W- ——n" (2 17) 9      c2     p0c
2

0\Cv     CJ dt      Po42AP ' K -    ' 

where K is the thermal conductivity, The constants A and B are the coefficients of 

the polynomial describing the relationship between the fluid's density and acoustic 

pressure variation described by Beyer [6]. B/A is proportional to the ratio of coeffi- 

cients of the quadratic and linear terms in the Taylor series expression for pressure 

as a function of condensation. We use the second time derivative of (2.17), 

d2
P' _ i ay    K / i     i \ 9V _   B   ay2 

dt2       c\ dt2      Poc
2

0 \CV      Cj dt3      2Ap0c
4

0 dt2 ' (2'18) 

to eliminate acoustic density from the nascent wave equation (2.16).   We are now 

left with an equation with the acoustic pressure, p', as the sole dependent variable. 
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Collecting like terms, (2.16) can be written as 

(«) (b) (c) 
/•- 

CQ Ot2        p0 p0Cn 
(2.19) 

^   ay2   ,x   0 N i d3
P' 

2Apo^ di2      v r>o^ d*3      #>cg  di2 

The terms in the above equation are: (a) the D'Alembertian, present in all wave 

equations. This term describes the propagation of a pulse in time and space; (b) 

the ambient inhomogeneity in the medium's density, and is zero for a homogeneous 

medium; (c) and (e) the loss terms, due to the thermal conduction and the viscosity 

of the fluid respectively; and finally (d) and (f), the nonlinear terms arising from the 

equation of state and the continuity equation respectively. The nonlinear terms can 

be combined using the nonlinearity coefficient, /?, which is related to the number B/A 

by 

ß = 1 + ^- (2-20) 

Simplification allows us to write the wave equation in terms of the acoustic diffusiv- 

ity, 8, which accounts for both thermal and viscous losses, in a form attributed to 

Westervelt [73], 

1 <9V      1 8 <9V       0  dV2 

VV - \% ~ ~V
P' ■ V^o + 4 W + A^r = °- (2-2i) c2, dt2      p0 4 &       Poco ot2 

We now have a second-order wave equation describing the acoustic pressure in terms 

of space, time, and the fluid's material properties. 

The simulations presented in this study use an absorption coefficient, a, which is 

related to the acoustic diffusivity by 

8u>2 

a = 
2c3' 

and has the units of Nepers/meter [Np/m]. 

(2.22) 
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2.4    Similarity Solution for the Wave Equation in Quiescent Fluids 

The wave equation (2.21) is given in its full dimensional form. Actual values for 

c0, ao, Po, ßo, and source pressure, pSOUrce, must be provided for the specific prop- 

agation medium under consideration to obtain a solution for that case. A useful 

technique that can be used to gain insight into the essential nature of the wave equa- 

tion is a similarity analysis. The advantage of using similarity analysis is that two 

systems with different background parameters and driving pressures can be studied 

using the same solution, provided that certain nondimensional quantities that char- 

acterize the wave equation are the same for the two systems. This reduction of a 

differential equation to its simplest form with no explicit dimensional variables is also 

known as nondimensionalizing the equation. In this section we nondimensionalize a 

simplified version of (2.21) for illustration purposes in polar cylindrical coordinates 

in a homogeneous medium. The dimensional form of the wave equation is 

1 d2p'       2a d3p'       2ß 
VV-3-5S- + —5-155-+ Pw + Vdt) 0. (2.23) 

CQ dt2      c0u>2 dt3      PQCQ 

A characteristic set of nondimensional variables with hats (e.g. i) is used instead 
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of the dimensional variables (e.g. t) used in (2.23). 

A P' 
p — i 

Psource 

A r 
V = ——, 

Ao 
A X 
X = ~—* 

Ao 

i = tu, 
c 

c = 
Co 

1 
A p 
P = 1 

Po 
a 

a = 
a0 

ß = 
ß 

(2.24) 

The zero subscripts, (e.g. p0) denote background values. In this case we take the 

background parameters to be constants, as the medium is assumed to be spatially 

homogeneous and quiescent. 

In polar cylindrical coordinates the scalar Laplacian is 

w = IA(rV) + flV = aV + IV   «V (225) 
r dr    dr        dx2       dr2      r dr      dx2' 

where we have assumed axial symmetry exists and neglected any derivatives in az- 

imuthal angle, 6. This is a useful geometry found in most experimental bowl trans- 

ducers in research laboratories. The operators in (2.23) are nondimensionalized using 

the angular wavelength 

Äo = ^, (2.26) 
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and the transformations on the operators 

dr _ d    r    _  1 

dp' _ ^source G>P 

dr \0    dr' 

d2p' _ p' d2p 

dp' _ Source dp 

dx        A0   dx' 

<9V p' d2p 
dx2 ~ XIdx2' (2.27) 

1 _    1 

r Äo r' 

ä = dlM = w' 
öp' _ dp 

'dt~u;PsouTceW 
d2

P' _  2       ^p 
^2   -WPsource^2, 

ay _ 3     (pp 

Applying the above transformations and multiplying through by (Psou°rce) gives 

a dimensionless form of the wave equation in a homogeneous medium in cylindrical 

coordinates 

d2p   i dp   d2p   d2p - d*p   2ßoPs, ß2p     fdpx 

dt2     \dt dr2      rdr     dx2      dP dis po 4 

(2.28) 

We pause now to examine the remaining factors in front of our operators in the 

nondimensional wave equation (2.28). Two points of primary importance are noted: 

1. Two nondimensional terms are all that controls the behavior of any particular 

case of this equation, so long as the nondimensional factors are the same. These 
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factors are 

and (2.29) 

Po Psource n 
 2— - Po e. 

PO 4 

Note that the absorption term contains a factor called the absorption length 

a0 Äo, which is the amount of absorption suffered in propagating the distance 

X0. Also note that the acoustic Mach number, 

^source "source 
£ = 

CO PO $ ' 
(2.30) 

appears as a multiplier in front of the nonlinear term. 

2. The ratio of the two nondimensional parameters in (2.29) is a measure of the 

importance of nonlinearity to absorption. This ratio is derived by Blackstock 

[7], and is called the Gol'berg number, T, 

T = S^L. (2.31) 
OLQXQ 

In the coming chapters we will see how the nonlinearity and the absorption both 

come into play in the propagation of finite-amplitude waves, and how the nonlinear 

steepening and the absorption are competing mechanisms in nonlinear wave propaga- 

tion. Blackstock points out that the Gol'berg number can be used as an estimate of 

the overall nature of a pulse's propagation. If V > 1 then nonlinearity dominates and 

the waveforms will tend to develop steep shocked profiles, if V < 1 then absorption 

dominates and the waveform decays without severe steepening. 

2.5    The Wave Equation with Time-Varying Background (TVB) Param- 

eters 

We re-derive the wave equation from the nonlinear equations of fluid mechanics and 

state, now allowing the background sound speed and density, p0(t) and c0(t), to be 
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time-varying. We refer to this as the time-varying background (TVB) scenario or 

solution. The motivation for deriving the TVB wave equation is that changes which 

occur to the background values of p0 and c0 at time scales comparable to those of 

the acoustic variables may contribute to the wave equation. The fluid's density and 

nonlinearity coefficients are assumed to remain constant. This constraint is born of 

the fact that only the primary propagation variable (sound speed) and the primary 

heating parameter (absorption coefficient) have been reported for tissue as a function 

of temperature. Thus for this analysis the density and nonlinearity coefficient are 

assumed to be constants. 

The continuity equation (2.13) and the momentum equation (2.6) are manipulated 

as in Section 2.3, except that time-derivatives of p0(t) and c0(£) are assumed to be 

non-zero. These derivatives are taken to be first order terms. The continuity equation 

(2.1) is now 

^T + % + P°V ■ u = -VV • u - u • Vp' - u • Wp0. (2.32) at      at 

Equation (2.32) to first-order accuracy (neglecting 0(e2) and higher-order terms) is 

^ + f + ^V.u = 0 (2,3) 

from which we derive the first-order relations 

V.«   =   -±%-!-% (2-34) 
Po at     p0 at 

V2(V-u)   =   --£vy. (2.35) 
Po ot 

Next we consider the momentum equation, 

p^ + Vp - FB - (A + 2/i)V(V • u) = 0. (2.36) 

In the absence of sound, p' = u = 0, and so the gradient of the background pressure 

and the body force cancel as in (2.8).   So (2.36) for the TVB case to second order 
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accuracy is 

Po~ + Vp' = -p'-^ - pou • Vu + (A + 2fi)V2u, (2.37) 

where we have used the vector identity 

V(V • u) = V2u + V x V x u (2.38) 

and assumed that the flow is irrotational, vis. V x u = 0. The momemtum equation 

to first-order accuracy in a TVB fluid can be written to first order 

^ = -lvp' + 0(e2). (2.39) 
at        po 

Note that this is identical to that of the quiescent medium. 

A first order wave equation can be obtained by subtracting the time-derivative of 

(2.33) from the divergence of (2.39), 

VV - ^ = 0. (2.40) 

The equation of state for a TVB fluid is 

To first order this is 

p' = clp' + 0(e% (2.42) 

from which the first-order relations below may be derived 

%-i9i+°^ (2-43) 
VP'-ivp' + C(e

2). 
co 

The next step towards obtaining a second-order wave equation for nonlinear ab- 

sorbing TVB media is to use first-order relations to eliminate p' and u from the wave 
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equation, and to express the equation in terms of p'. We write the continuity equation 

(2.32) as 

dt      dt p0 dt     p0 dt 

-   P'a"° + ^^-^-VP'-u.V,0 (2.44) 
p0cl dt       2p0Co  dt       q 

p'  dpo ,     1    dp'2      po du + ^-4::£r + e^r-u-Vpo + ^). 
p0cl dt      2/90Co dt      2c2, dt 

If we define the Lagrangian density (c.f. Hamilton and Blackstock [42] Chapter 3) 

£=2-'°"2-£r (2-45) 

then the quantity 

1 3C       po du2 1    dp'2 

cl dt      2c2, dt      2Poct dt 

so the continuity equation can be written as 

+ 0(e3), (2.46) 

dpo     dp'       „ p' dpo     dp'2 _        1 dC ,_ .„. 
dt      dt PQCQ dt       dt CQ dt 

Equation (2.47) is the same as that would be obtained in a quiescent fluid with the 

exception of the terms containing -ßf-, which are due to the TVB character of po- 

We also rewrite the momentum equation for a TVB fluid (2.36) using the O(e) 

substitutions (2.35), (2.39), and (2.43), 

„* + Vj/ = (A + 2„)V(-I^ - if) + ^V„' - *V«> 
dt po dt      po dt       po% 2 

-     1 + !'.v|+J_v/_^ (2.48) 
po        dt      2p0cl 2 

\ + 2(idp'     „„ 

Po        dt 

where the gradient of the Lagrangian density (2.45) is 

PDT7..2        W2 

2po4 
V£ = ^Vu2 - i±-2. (2.49) 
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To obtain a wave equation we must subtract the time-derivative of (2.47), 

d2p' ,       0_ d2p0     _      dpo 
—^ + poj-V ■ u = —^- - V • u— 
dt2        at ov dt ,0 rns 

j_dpodi    i ay2   i d2c        [Z-ÖÖ) 

+
 p0c

2
0 dt  dt + p0c

4
0 dt2       c2 dt2 ' 

from the divergence of (2.48), 

dt poCo dt 

to obtain, after substitutions and algebra, 

P      df> po4 dt2 pool dt^  po 

+ ^£l - 1 (?£l\2 - J_^^- Tv2 + — ^ £       (2'52) 
+
  ^2      po\dt)       Pool dt dt      V ^V    ' 

> „ • 
TVBP0 

This is the "nascent" wave equation for the TVB case. The terms in (2.52) are similar 

to those derived for the quiescent case, with the addition of the terms labeled TVBPo 

which are due to the TVB nature of p0. The background sound speed's contribution 

to the TVB terms will come about in the following equations where the equation of 

state is used to eliminate the p' from (2.52). 

Applying first-order substitutions (2.43) to the state equation (2.41) gives a second- 

order expression for p' as 

Differentiation with respect to time twice gives 

d2p' _  1_ÖV _ J__^_^V! _    1   /c(7-l)flV _!<V^o 
~dF~4&t2     po4 2A dt2      p0c

4
0     Cp     dt3    4 dt dt ' 

TVBCQ 

where the term labeled TVBCQ is a result of the TVB nature of c0. 

(2.54) 
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Substituting (2.54) into (2.52) eliminates the p' variable from the wave equation, 

leaving the wave equation for the TVB medium as 

2/_j_öV__j_ay^/   JB\_(A + 2^)öV    l «(7-i)ay 
V   P .2   ail    ~ .    _4     Cu.9 J + nJ cl dt2 p0ci dt2   V      2A/        Po4     dt3     po4     Cp      dt3 

+ TVBP0 + TVBC0 -(V' + W2)C, 

or after some manipulation, and neglecting the C terms, 

_3 ,   i ay , 8 ay    ß ay2    i 

2 

(2.55) 

d2p0      l_ /dpo V     J_öpoö^     4 aj/ dec,     n (2.56) 
a*2      po \dt J       pool dt  dt      CQ a^ dt 

TVBP0.C0 

Note that J = b/p0 where 6 = X + 2/i + -^-(7 - 1). 

As a comment, truncating higher than second order terms in the derivation of the 

above equations results in a reasonably compact wave equation. Keeping higher order 

terms than second order would result in significantly more complicated equations. 

2.5.1    Nondimensionalizing the TVB Wave Equation 

We nondimensionalize (2.56) for a one-dimensional case using characteristic nondi- 

mensional variables with hats (e.g.   po) as before, with some new nondimensional 

variables 

c0 
Co = —, 

coo 

Ä        Po 

«o = , 
«00 

B - ß° Po- 0-. 
Poo 
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The parameters with zero subscripts, (e.g. p0) denote background values, which are 

functions of time2. The parameters with double-zero subscripts (e.g. pQ0) are back- 

ground parameters of the undisturbed background state of the fluid before any inter- 

actions altering the background properties take place in the fluid, and are constants. 

The wave equation in nondimensional form is 

d2p 1  82p        &o ~     83p ßo   /Wsource #2p2 dp dpo 

dx2     c\ dt2      co dt3     po%   poocoo    dt2 ox ax 
2 

(2.58) 

dt2      Po\ di )      pool di di     c3 di di 

2.5.2    Ordering the Terms in the TVB Wave Equation 

In subsequent chapters on thermal effects of focused ultrasound we will find it conve- 

nient to show that not all terms from (2.58) need to be computed if some are much 

smaller than the others. To this end, we now examine (2.58)'s terms to set their 

magnitudes to some scale for comparison. 

For reasonable amounts of variation, the background parameters are 0(1), 

co, po, ao, ßo = 0(1), (2.59) 

(2.60) 

because for any background parameter xo 

-        *° _ O(l) 
Xo   xoo   o(iy 

We can thus drop the hatted groups of parameters leading the terms in (2.58) as 0(1), 

so 

d2p     d2p ~   d3p     ßooPsource d2p2 dp dp0 

dx2     dt2 dt3        poocoo    dt2 ox dx 

d2ßo     fdßoV     dpdßo     dpdcp 
"I       l        s\C"       I '        r\?      <-\t     "T"     f\?      r\? 

(2.61) 

dt2      \dt J       dt dt      dt dt 

2We assume that some mechanism changes the background properties. In the case of focused 
ultrasound surgery, background parameters have been measured to be functions of temperature. 
Since the temperature of the tissue in this case is time-dependent, so are the background properties. 
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In order to determine the importance of the terms relative to one another, we 

rewrite (2.61) as 

82p 82p ~      d3p        A)opSource d2j? Öß dß0 

X 

Tl®2Po . fradßo\2 . Tadpdßo     Tadpdco 
"T Z^r-        -\ TA—TÄ 1 -7^r~^T — u? 

(2.62) 

Tb dil     \ndibJ   ' ndiadib  ' ndiadh °b 

where two nondimensional times have been defined corresponding to the acoustic and 

the thermal time scales: 

L = -, (2-63) 

*6 = -, (2-64) 
n 

and we used the manipulation (an example is given here), 

dcp _ dc0 dib _ dcp d(tln) _ dc0 ra . 

dia ~ dib dia ~ dib d(t/ra) ~ dib n 

Now that the equation is written in terms of partial derivatives which are all order 

unity, we can now use the factor ra/rb as an estimator of relative magnitudes of the 

terms. 

0(1) 0(1) 0(aooÄoo) 0(/3oOPsource/poOcgo) 

d2p     d2p ~    d3p     fop, 
dx2      dt\ dtl        Pooclo 

0(ra/r6) 

ra^2Po , fradp0\      Ta dp dpo     ra dp dc0 _ 
~t~ A        A    ~~|~ _A       A U. 

(2.66) 

Tb dil \ndibJ ' ndiadib ' ndiadib 

As an example, we perform an order-of-magnitude analysis of (2.66) for the case of 

soft tissue medium insonated by a sinusoid at acoustic angular frequency u>a of 1 MHz. 

Our experience [37], and laboratory measurements [45, 11, 65] at typical therapeutic 

biomedical device source pressures (1 MPa) shows that for an acoustic source with 

period ra = lp,s, tissue heating occurs over time scales on the order of rb = Is. Thus 

-«10-6. (2.67) 
n 
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For typical background reference properties of soft tissue, 

c00 = 1600 m/s, 

^HOOkgM ^ 

aoo = 4.5 Np/m, 

/?oo = 5.5, 

we conclude that the D'Alembertian terms in (2.66) are of magnitude unity, the 

absorption and the nonlinear terms are of magnitude 10~3, and the TVB terms are 

of magnitude 10"6 and 10"12. This result shows formally that for hyperthermia 

applications (to be discussed in detail in Chapter 5) the TVB is negligible in its effect 

on the wave equation. In other words, the acoustic field is not measurably influenced 

by the change in tissue background parameters when viewed at time scales ra. 

2.5.3    Conclusions Regarding the Wave Equation for TVB media 

The analysis suggests that dynamic background medium properties, p0(t) and c0(t), 

can be important enough to be included in a second-order wave equation. The nondi- 

mensionalized equations suggest that the time-variation of p0 and c0 can be neglected 

if the characteristic time of change for these parameters is much longer than the 

acoustic characteristic time scale, the period. From this we conclude that while in 

the biomedical ultrasound example at 1 MHz and higher we don't expect temperature- 

driven variations in tissue parameters to be fast enough to be included in the acoustic 

wave equation calculations. The simulations to be shown in Chapter 5, run over 

the time of several seconds, do show that the variation in background parameters 

(especially a) is very important to temperature predictions in the focal region. 

This analysis is distinct from analysis of spatially-varying media as a debilitating 

factor in time reversal arrays. Propagation in the ocean over long enough ranges 

to allow the channel to change appreciably over the time scale of propagation from 

source to array is possible. Dowling [22] and Dowling and Jackson [21] studied this 
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effect, and conclude that while the time reversal process is robust enough to allow 

for good retrofocusing even in realistic ocean channel conditions, the beamwidth is 

increased. Experimental evidence for this was provided by Kuperman et al. [52], who 

suspended a 400 Hz vertical line array in the Mediterranean Sea, and were able to 

successfully focus onto a source 6.3 km away from the array. 
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Chapter 3 

FOCUSED SOURCES AND ARRAYS 

In this chapter basic terminology and concepts of focusing are presented. The 

application of focusing to time reversal arrays and therapeutic ultrasound devices is 

left until later specialized chapters on these topics. The means of controlling the 

position of a focal spot are described here, and some simple implementations of the 

wave propagation model developed in Chapter 2 are shown and compared to solutions 

by other methods for verification. 

3.1     Fields in Free Space 

Our goal is to use multiple sources to construct an extended focused source or an 

array. We begin with a description of the acoustic field due to a single source much 

smaller than a wavelength, commonly known as a point source. 

3.1.1    The Green's function in free space 

A periodically-varying mass in unbounded space having spherical symmetry has a 

harmonic complex field. The Green's function at some spatial location x due to a 

source at xs, denoted by G(x|xs), is defined as the solution to the inhomogeneous 

Helmholtz equation, 

(V2 -(- k2) G(x|xs) = -4TT 6(X - x,), (3.1) 
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where the Dirac delta function 8(x — xs) is an impulsive source at position xs. The 

solution to this equation in an unbounded medium is the free-space Green's function, 

ikR 
G(x|xs) = ^-, (3.2) 

where the displacement R = \x — xs\. This shows that a field due to a point source in 

free-space will experience a 1/R decay without any medium attenuation. A focused 

source uses the combined fields from many small (or an extended) sources. The 

sources are geometrically arranged so that a stronger field results at locations where 

the arrivals from the individual component sources meet. The gain obtained by 

allowing the fields of many small sources (or the integrated extended source) to add 

up is called geometric gain. For linear acoustics, this gain is the result of superposition, 

and is an algebraic sum of the individual fields of the component sources. 

3.2    Focusing Using Arrays 

This section describes an acoustic source consisting of more than one active element 

(an array) driven in some deliberate fashion to affect a localized region of heightened 

average acoustic intensity in space, time, or both, called a focus. The position of the 

focus in space and time is determined by the geometry and phase relation of the array 

elements, as well as propagation path parameters. 

For focusing in the linear acoustics case using the superposition principle and 

multiple transducer elements, a wide body of literature exists demonstrating the the- 

ory and application of linear array beamsteering [19, 62, 69]. The focusing can be 

performed mechanically by placement of the elements, exploiting their geometry, or 

electronically by applying phasing to the driving signals, [62]. Lithotripsy and ther- 

apeutic focused ultrasound treatment are examples of the use of focusing to form an 

intense acoustic field at some desired location, while diagnostic imaging and sonar 

are examples of using electronic beamforming to locate and identify objects in the 

acoustic beam. 
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3.2.1 Parameters we cannot control 

In most applications the propagation path is given by the nature of the application. 

In underwater and biological applications, the path can be complicated. The presence 

of scatterers, three-dimensional inhomogeneous medium, as well as absorption, non- 

linearity, and dispersion, make it difficult to model the propagation in these media. 

We will see how phased arrays and time reversal systems can be used to overcome 

some of the difficulties associated with obtaining a focus in such complicated media. 

3.2.2 Parameters we can control 

Typically, we can specify the geometry of an array only during its manufacture. Since 

the array is usually an expensive component of the hardware, arrays must be carefully 

designed for the purpose at hand for best efficiency. Once an array is chosen, the 

phasing of the elements is the parameter most often used to create and position the 

focus. This process is called beamforming, and has long been used to advantage in 

underwater engineering applications. Mechanical manipulation of the array as well 

as electronic beamsteering can be used to move the main lobe of a focused array. 

Diagnostic ultrasound equipment generates images of extended regions using such 

techniques to construct a multi-dimensional image from several snapshots (B-scans) 

in the receive mode along a direction. 

3.3    Linear Arrays 

Perhaps the simplest manifestation of multiple-element sources is the linear array, 

consisting of multiple elements arranged along a straight line. Note that a linear 

array refers to its geometry, and should be distinguished by context from the term 

used to describe small-signal acoustics. Figure 3.1 shows a diagram of a simple linear 

array. For an inter-element separation, d, and a sound speed, c, we can calculate 

some relations for phasing the elements of a linear array for focusing purposes by 
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Figure 3.1: A line array of sources phased by time delays Atr 

controlling the time delay for the nth element, Atn. The richness of the device can be 

appreciated by considering the following few control scenarios: 

• Beamsteering: making the time delays, Ain, increase linearly, Atn+i = Atn + 8. 

This will cause the main wave front to propagate along a direction other than 

normal to the face of the transducer array. The time delays to affect this steering 

are, 

Atn = n-sinö + T. 
c 

(3.3) 

• Focusing: including a quadratic variation in the time delays to obtain focusing 

at some range, F, as well as steering angle, 6. In this case the time delays are 
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given by Von Ramm and Smith [62] as, 

nd\       nnd 
1+1 — 1   -2-pSin0 (3-4) 

• Sidelobe reduction: including array shading, whereby various amplitude-weighting 

windows are applied to the array aperture. This is also known as apodization. 

The cross-sectional intensity profile of a beam may be controlled using such 

techniques. This can be used to reduce the normally unwanted sidelobes or 

grating lobes of a beam, where acoustic energy is heightened at periodic angu- 

lar directions by constructive interference from periodic array sources. 

Note that an overall time offset, T, is added to the delays to preclude any of the time 

delays in this causal system from being negative. 

Other details such as individual element directivities are not considered in this dis- 

sertation, but will affect the overall array field pattern. In the case of linear acoustics, 

such field patterns are routinely studied and calculated and measured for individual 

arrays at the time of manufacture. For finite-amplitude acoustics it is generally not 

possible to calculate field patterns due to the nonlinearity and possible interaction 

between the fields of the individual elements, except via approximations, laboratory 

measurements, and computer simulations. 

3.4    Arrays with Polar Axial Symmetry 

Figure 3.2 shows some geometries of focused sources with axial symmetry. Such 

source geometries are commonly found in applied and research settings. In (a) a 

single element in the shape of a bowl achieves its focus at the center of curvature. 

Single-element spherical bowls are common in hyperthermia research labs, and while 

they provide little flexibility, they are relatively simple to use. Another simple single- 

element focused source is shown in (b), and uses an acoustic lens with a different 
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sound speed than the surrounding propagation medium to produce the focusing. This 

configuration is also simple to use, but requires knowledge of the properties of the 

lens and the propagation medium [54, 53]. In addition, problems of heating can 

occur in the lens due to absorption.   Another common source is shown in (c), and 

Figure 3.2: A focused source can be obtained by manufacturing a single element as 
a bowl (a), a single flat piston source with a curved acoustic lens (b), an array of 
elements arranged on a bowl (c), or a flat annular array (d). 

consists of multiple small elements arranged on the face of a bowl-shaped substrate. 

This configuration requires sophisticated driving electronics to operate correctly, but 

provides more flexibility in forming the focus than a single-element, and allows more 

advanced control of sidelobes for example. Finally, (d) shows a fiat annular array, 

which allows for positioning of a focus along the axis of symmetry of the array. Grating 

lobes in annular arrays depend on geometry, number of elements, and wavelength, but 

can be reduced by increasing the bandwidth of the signals [23]. While (a) and (b) are 

only capable of one focus, the use of banks of array elements in groups allows (c) and 

(d) to form multiple foci if desired [24]. 

Numerically, we consider arrays of finite aperture as consisting of many electroa- 

coustic transducer elements which have no appreciable spatial extent themselves, and 

which may be driven independently by an external signal generator. This suggests 

the term "sampled aperture" as a descriptor of an array. Another common modeling 

assumption is to take the frequency responses of all the elements to be identical, i.e., 
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the elements have the same transfer functions. If we assume that the total resulting 

acoustic field is the linear superposition of the fields from each of the small sources 

we can compute the CW field quite easily. Similarly, if the sources are pulsed, then 

a time-varying version of the field is obtained. The focusing is now both spatial and 

temporal, and simple time-of-flight calculations allow us to compute when and where 

the maximal intensity region will occur. Conversely, the focus can be achieved at 

the desired position and time by controlling the applied pulses with time delays in a 

predictable manner. 

While this study is primarily interested in the time domain behavior of arrays, 

analogous statements can be made for the frequency domain representation of the 

array response. The frequency response of the array is the superposition of the fre- 

quency responses of the array elements. 

An array may be used in a transmit (active) mode or in a receive (passive) mode 

assuming the transduction properties of the elements (both electric and acoustic) 

have such symmetry. This allows many array systems to be used for transmission 

of acoustic energy towards a given position, or to be used as a receiving device for 

recording sound, the greatest sensitivity being at the focus. Also, we can make the 

distinction between focusing at some range and beamsteering along some steering 

angle, however we will refer to the combined effect of these localizations in space as 

well as in time simply as focusing. 

For random or inhomogeneous media, the Green's function of the propagation 

medium may not be known a priori, and the effects of medium variability may not 

be predicted entirely without using measuring instruments or numerical simulations. 

3.5    A Numerical Example: 1-D Propagation 

We now present a simple example of wave propagation using the model developed in 

this chapter. For the purposes of numerical modeling, the nonlinear term is expanded 
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into two terms, and the absorption coefficient is used. The wave equation is discretized 

and solved in the following form, 

„,       1 d2p      1 „    „ 2a d3p      2ß 

c2dt2 

(Pp     (d£ 
pdt2 + {dtJ 

0. (3.5) 
p0   ~ CQUP dt3     pool 

Solving an equation using finite differences involves discretizing the differentials in 

the partial differential equation via an expansion. The continuous variables are repre- 

sented by discrete approximations, given in a matrix representing the computational 

grid and stored in computer memory. The finite-difference time-domain (FDTD) 

method is one of the oldest and most intuitive methods for solving differential equa- 

tions on the computer. Details of the numerics are left for the Appendix. 

For our example, a one-dimensional plane wave is propagated from a plane wave 

source in a homogeneous medium according to equation (3.5), in Cartesian coordi- 

nates, 

d2p      1 d2p      Idpdpo      2a_(Pp      2ß 

dx CQ dt2     po dx dx     CQOJ
2
 dt3     pQCQ 

d2P     [dp 
Pdt2     \dt 

0. (3.6) 

3.5.1    Solution Using the FDTD Method 

Solving (3.6) numerically involves discretizing the unknown pressure field, p(x, t) onto 

the spatial and temporal grids in computer memory. The discrete representation of 

the pressure is p(xi, tn), or simply p", with integers i = [1,2,... ,Imax] and n = 

[1,2,... , Nmax\. The grid locations are given by 

Xi = x0 + (i - l)Sx, 

tn = to + (n- l)St. 

(3.7) 

(3.8) 

where 8t and 8X are the separation between adjacent grid locations is time and space. 

Note that the present discussion is only valid for uniform grid spacing. The spatial 

extent of the simulation, or the computational domain, is x — [x0, (/max 8X)], and the 

simulation time frame is t = [to, (iVmax 8t)]. 
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The representation of the differentials is derived in the Appendix, but we list here 

the relevant expressions for the terms in the wave equation, accurate to 0(6^, 81): 

d2p      1 < 2  
H(P?+i-2tf+tf-i)+°(£)» dx2 52 Vn+1 

dp      1 

^ = ^W+1 -W+Pr1) + 0(51),    (centered) (3-9) 

= ^(2rf - 5PT1 +4rf-2 -PT3) +0$),    (right-sided) 

^ = 2^3 (6tf - 23?^ + 34Pr
2 - 24p?-3 + 8Pr* - IT")+<W). 

We assume that we know what the initial and all previous conditions of the pressure 

field are, i.e. all variables are known except the future values oip(x, t). All pressures 

prior to t = 0 are initialized to zero in our simulations. A driving pulse is applied at 

source locations on the grid, which propagates according to the wave equation. The 

expressions (3.9) are substituted into (3.6) and rearranged to solve for pressure at the 

next time step, p™+1, 

<Zi z1 + q2z3 + q2(p? z4+ M - z2, (3.10) 

where 

9i = 12«' 
X 

92 = -A, (3-11) 

92 .„2 /9C2 

#.5.£    Boundary Conditions 

We impose absorbing boundary conditions (ABC) at the edges of the computational 

domain to prevent or to minimize reflections from the edges of the domain.    By 
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doing so the simulations approximate the behavior of waves in infinite media. Low 

order ABC's are relatively easy to implement, for example using Kosloff and Kosloff's 

technique which applies a progressively more absorbing layer near the edges of the 

domain [50], while Mur's well-known method [60] applies a radiation condition 

T - l-a4=»■ (3-i2> Ox     c0 ot 

The ABC's and their implementation will be left for the Appendix. 

For simulations possessing polar cylindrical symmetry, only one half of the two- 

dimensional (r, a;) domain is calculated, or r = [0,rma!E], x = [xmin,xmax\. The 

boundary condition at r = 0 is 

f = 0. (3.13) 
Or 

The boundary conditions along the other edges use radiation condition ABC's. 



34 

Chapter 4 

TIME REVERSAL ARRAYS 

Several factors are cited for reducing the quality of focusing or imaging with phased 

arrays [62]: 

• nonideal response of transducer arrays and limitations in delay line systems 

• refraction errors due to medium inhomogeneities 

• target ambiguities due to phase quantization errors 

A linear time reversal array (TRA) or phase-conjugate array can correct for all but 

the last deficiency of phased array systems listed above. By so doing, the TRA uses 

the medium as a matched filter to automatically generate the delays at each element 

for transmission and focusing [20]. Time reversal arrays are alternately called time 

reversal mirrors (TRM) owing to the way in which the array acts as a temporal mirror 

for the captured signals. 

Time reversal mirrors have found several uses in medical and underwater applica- 

tions [72, 67, 52]. The concept of time reversal is an extension of phase conjugation 

theory, which is known to hold for linear fields in reciprocal media [48, 27]. The time 

reversal array captures not only the initial phase, given by Atn, but also the waveform 

by sampling signals coming from the target through a propagation medium which ide- 

ally remains stationary. The basic operation of a TRM is explained in a number of 

articles by Fink [27, 28], and is illustrated in Figure 4.1 as a three-step process consist- 

ing of target illumination, signal collection, and time-reversed retransmission. Most 
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time reversal studies consider an abbreviated sequence of events, starting with the 

array receive mode (b), followed by the array transmit mode (c). 

© 

(b) (c) 

Figure 4.1: Time reversal array operation after Fink [27]. In (a) the target is illumi- 
nated by a pulse from a single element, in (b) the receive mode where the illuminated 
target acts as a small scatterer emitting a spherical pulse while the array is recording, 
in (c) the transmit mode the array retransmits the time-reversed pulses recorded in 
the receive mode. 

4.1    Impulse Response Analysis 

Fink [27] has described the behavior of linear time reversal systems in terms of the 

impulse response.   The impulse function 5(t) can be used to describe the dynamics 
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of the reception and retransmission of acoustic pulses. The impulse response analysis 

to follow is after Fink [27]. If an array element E{ causes a (nondimensional) velocity 

excitation v(t) — S(t), the acoustic velocity potential at some point in space, x0, is 

described by the diffraction impulse response /i*(x0, t) for the illuminating (transmis- 

sion) event due to E{. A related impulse response /^(x0,£) can be defined for the 

receiving event due to an impulse source at x0. A very useful aspect of the time 

reversal system is that the exact impulse responses do not need to be known or cal- 

culated. What is necessary is that the transmit and the receive modes have identical 

impulse responses, whatever these may be. 

This analysis is dependent on acoustic reciprocity. For a Green's function, G(x0, to|x, t), 

representing the field at x at time t due to an impulse excited at x0 at time t0, the 

reciprocity theorem for the Green's function states that 

G(xo,<o|x,<) = G(x,i0|xo,*). (4-1) 

We can write the diffraction impulse responses in terms of the Green's functions over 

the transducer surface, Si, 

hr
{(x,t)=  I G(xo,io|x,*)rfa:, (4.2) 

JSi 

h*t(xo,t)= f G(x,<o|xo,<)<*&. (4-3) 
JSi 

Therefore, we need not distinguish between the receive and the transmit mode diffrac- 

tion impulse responses, since they are identical by (4.1). Using the notation of Fink 

[27], we simply denote these responses by hi(x0,t). 

Another set of transfer functions need to be accounted for. That is the transfer 

functions describing the conversion of acoustic energy into electrical energy during 

the receive mode, h?e(t), and the conversion of electrical energy into acoustical energy 

during the transmit mode, h1a(t). These transfer functions are convolved with those 

of the propagation during the time reversal process. The steps of the time reversal 

operation, starting with emission of the illumination pulse from the target are: 
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1. The receive mode: For a target located at x0, the observed (illumination) signal 

is the convolution 

h«e(t)®hi(x0,t). (4.4) 

The emission from the illuminated target is sampled by the TRM over a time 

interval T, which we expect to contain the desired signal information. The 

time-reversed signal is thus 

h?(T-t)®hi(xo,T-t). (4.5) 

2. The transmit mode: The time-reversed signals must now be retransmitted by 

the array, requiring convolution through h°a(t) and propagation to the target 

through hi(x0,t), 

Ke{T -t)® hi{x0, T-t)® hf{t) ® hi(x0, t). (4.6) 

The maximum response is obtained at time t = T, and if /i-a(i) = hfe(t), which is a 

reasonable assumption for high-quality transducers. The reason is that the maximum 

output of a linear system having impulse response h(t) is achieved when the input is 

of the form h(—t). Such a response is calculated from the convolution h(t) ® h(—t), 

and is an even function with a maximum at t = 0. 

The total field due to the array is then the sum over the elements, 

J2hT(T -t)® hi(xo,T- t) ® hf(t) ® hi(xo,t). (4.7) 
i 

The elements achieve constructive interference at x = x0 and t = T, resulting in a 

strong focal spot field akin to that due to geometrical focusing. 

4.2    Time Reversal Array (TRA) Debilitating Factors 

One goal of the present study was to examine the feasibility of using TRAs in a shal- 

low water environment to focus acoustic energy onto waterborne mines for possible 
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neutralization by acoustic pressure. Due to the resolution and dynamic range lim- 

itations of current systems, uncertainties in amplitude, time-domain waveform, and 

phase will result. This will cause a general degradation of the performance of the 

phased array system. An effective mine countermeasure (MCM) system will certainly 

require going to such high intensities that nonlinear properties of the transduction 

devices and the propagation medium will become important. The effect of finite- 

amplitude propagation on the performance of a TRA and the effect of absorption 

in the propagation medium are also studied as debilitating effects on TRA focusing. 

These debilitating effects will be studied in the remainder of this chapter. 

4.3    TRA Initial Phase Error Effect 

Error in the initial time delay for TRA elements is the first debilitating factor we 

will examine in this chapter. This can be expected to be one of the most important 

debilitating factors which degrade the performance of a TRA system. Since the TRA 

is a phased array, the integrity of the temporal or phase information is crucial to 

its operation. The most important phase data is that which determines the initial 

arrival times of the pulses from the array elements at the location of a target. This 

feature is shared with ordinary phased arrays or time-delay focusing, which relies on 

time of flight of the pulses to form a focus by superposition at the target location. 

Other phase effects would involve the phase information for the pulses emitted by each 

TRA channel following initial activation, this would determine the focusing quality 

due to multipaths, multiple scattering, and phase aberration correction from medium 

refraction index inhomogeneities. 

4-3.1    Signal Phase Error 

Error in the signal initial phase was modeled by introducing random stochastic jitter 

into the time-domain signals that the array elements record during the receive mode. 
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The jitter can result from limited-resolution data acquisition electronics in the receive 

and/or transmit modes. The jitter is calculated for each array element individually 

as a time delay in the initial phase of each signal. Because the present study seeks 

to define a starting point for evaluating the relative effects of the more important 

parameters described that reduce the effectiveness of the time reversal array, only 

the simplest cases are studied. For example, one could have introduced jitter into 

each cycle of the wavetrains, or into each time step. In addition, amplitude jitter 

could be included. The simulations in this study only introduce jitter into the initial 

phase information of the pulses because the latter effects should be investigated in 

the category of pulse shape uncertainties, which is not addressed here. 

The jitter is given in terms of a fraction of the narrow-band signal's period. For 

a time-domain signal at array element k of the form pk(t), we introduce a time delay, 

Stk, so that 

Pk{t)->Pk(t + 6tk). (4.8) 

The base source waveform is a sinusoidal envelope. The uncertainty is introduced for 

each of the elements independently, padding the leading (jitter) time, St, with zeros. 

The jitter's duration is computed randomly for the kth element from the narrow-band 

period, r0, the maximum error, A, as a fraction of 2ir of the base wavelength for a 

run, and a random multiplier, cr^, 

8tk = akAr0. (4.9) 

The random variable, <7fc, can range from zero to unity, and is different for each 

element, but the maximum possible jitter for any array element is A for a given 

simulation. Of course, the jitter can be defined in other ways, and could be thought 

of as being due to two processes: one during the receive mode, and the other during 

the transmit mode of the array. 
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4-3.2    TR A Simulations in a Shallow Water Channel 

A vertical, 64-element, equally-spaced linear array with an aperture of 25.6 m is 

located in the center of a shallow water channel. A 2 kHz narrow-band point source 

is located 51.2 m away from the array, shown in Figure 4.2. 
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Figure 4.2: Diagram of the layout of the channel and time reversal system simulated 
in this study. The block diagram of the time reversal system is after Jackson and 
Dowling [48]. 

The Solution Method 

The linear inhomogeneous acoustic wave equation was used for the simulations pre- 

sented in this section, 

v.('^ i d2
P o, (4.10) 

p j     pc2 dt2 

with the primary variable being the acoustic pressure, p(r,t). 

The wave equation is solved in the time domain using a two-dimensional second- 

order accurate (in space and time) finite-difference time-domain (FDTD) code. The 
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calculations are carried out on a rectangular grid space of dimensions 1024 horizontal 

by 512 vertical mesh points. Absorbing boundary conditions were used at the extreme 

upper and lower edges of the computational domain to simulate an extended spatial 

region for visual clarity, although this is not necessary, as the time reversal method 

is valid in situations where multiple paths and scattering exist. 

The Propagation Medium 
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Figure 4.3: The sound speed profile used in the simulations. The extreme values for 
sediment and air are truncated to better illustrate the profile in water. 

The wave equation (4.10) is solved in an inhomogeneous medium modeled as air 

above a water channel approximately 50 m deep with a (fast) fluid sediment below it. 
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The sound speed profile (SSP) is fashioned after data given in [25] and [1]. A graphical 

representation of the SSP is shown in Figure 4.3. Although the basic SSP profile is 

similar to that used in many studies, it serves to illustrate the physical concepts 

only, and is not meant to be an accurate oceanographic representation of the SSP 

of any actual body of water. The properties used for 20°C air were a homogeneous 

sound speed of 343 m/s and a density of 1.2 kg/m3. The sound speed in the water 

channel was a function of depth below the surface, with inhomogeneities added to 

that profile. The sediment also had inhomogeneities built on top of an average sound 

speed of 1650 m/s, and an average density of 1860 kg/m3. Spectral statistics of the 

channel properties were not considered for the present study. The density field was 

obtained in a similar manner to complement the SSP. Inhomogeneities in the water 

and sediment are in the form of small fluctuating regions of excess sound speed and 

density. Figure 4.3 gives an idea of the roughness of this scale and its magnitude. 

Furthermore, a fine random component is added to the sound speed and density to 

give some fine structure. 

The shapes of the air-water and water-sediment interfaces are composed of combi- 

nations of sinusoids with small, local, random fluctuations. Again, the intention is to 

provide simulations in a non-uniform medium with rough interfaces and not to model 

any oceanographic spectra at this time. 

4.3.3    Results for TRA in shallow water channel simulations 

The results of the simulations confirm that the time reversal method successfully 

focuses linear acoustic waves onto a target in an lossless inhomogeneous medium with 

multipath effects and rough boundaries. Two snapshots are shown for the reference 

(ideal) case run. Figure 4.4 shows the pressure field during the receive mode of the 

array in the top panel, and the instant of maximum focus onto the source during the 

transmit mode of the array in the lower panel. 
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Figure 4.4: The acoustic pressure field. The top frame shows the pressure some time 
after leaving the source during the array's receive mode operation. The lower frame 
shows the pressure after the array's transmit mode, when the maximum pressure 
occurs at the source location. 

Description of TRA Phase Jitter 

Random time-domain jitter is introduced in the form of zero padding leading the 

initial phase signal from each array element. Figure 4.5 shows the pressure field in 

dB around the location of the source at the instant of maximum focusing. The values 

are referenced to the maximum pressure (at the source's location usually). It was 

found that the location of the focus maximum remained near the original location of 

the source. The reason is that for many-element arrays the focal shift would tend to 

average out to its original value because the error has a zero mean. On the other hand, 

significant degradation in focus quality was observed for jitter exceeding about one- 

tenth of a wave period. As expected, the initial phases of the waveforms were shown 
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to be very important to the focusing ability of the array. Simulations were conducted 

with jitter that ranged from 10%(2 n) up to a full 2ir of a period. The -3 dB points 

did not show any appreciable spreading from case to case, but the magnitude of the 

acoustic pressure for the cases with large jitter was far reduced and spread over a 

large region of the channel, resulting in significant focusing degradation for jitters 

greater than 10% to 20% of one period (see Figure 4.5). This result was published 

in [41] and is confirmed for line arrays in general by Von Ramm and Smith [62], who 

state that a maximum phase error equating to A/8 is tolerable for arrays with at 

least 16 elements. Wang et al. [70] also find that for a two-dimensional hyperthermia 

applicator a phase error equivalent to A/6 is tolerable. In the studies cited above, the 

authors find that an acceptable focus was maintained for random phase errors up to 

15 to 20% of a wavelength. 

The surface and bottom reflections can act as virtual sources to enlarge the ef- 

fective aperture of the time reversal array [5]. Further, the inhomogeneities and the 

multipath reflections can act to enlarge the effective aperture of the array. The latter 

phenomenon has been recognized by Dowling and Jackson, who refer to it as "super- 

focusing" in [22]. The localized differences in the index of refraction act as distributed 

sources which are present throughout the medium. The focal zone's full width at half 

maximum (FWHM) spot size in free-space is given by the diffraction limit as 

w = 1.2 Xz/a, (4.11) 

the width is proportional to the range, z, and inversely proportional to the aperture, 

a. In our case the FWHM would be approximately 1.8 m in free-space. We observe 

that the FWHM points in the channel occur at ± 0.3 m from the source location, 

and attribute this result to the virtual array due to the multipath propagation and 

the superfocusing described above. 
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Figure 4.5: Slices through the source position at the time of maximum focusing for 
various jitter conditions. The dashed lines denote the vertical slices (parallel to the 
array), while the solid lines denote the horizontal slices (perpendicular to the array). 
Panels are for (a) No jitter (reference case), (b) Max. jitter 10%(27r), (c) Max. jitter 
20%(2TT), (d) Max. jitter = 100%(2TT). 

4.3.4    Phase Jitter Simulation Conclusions 

The premise of using phase conjugate arrays for the focusing of intense acoustic fields 

onto a remote waterborne target has implications for MCM system design. The 

possibility of remote neutralization of pressure-sensitive mines would be an asset 

to the MCM arsenals that exist today [31]. The concept has been demonstrated in 

theory and in the laboratory for ultrasonic frequencies in medical applications. Ocean 

field experiments in shallow water have been conducted recently by Kuperman et al. 

[52].   These experiments were conducted at 400 Hz, and would not encounter the 
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difficulty with electronic jitter that high frequency arrays would suffer. However, 

the results obtained so far from experimental [18] and theoretical [22] groups show a 

remarkable robustness when using the time reversal technique with multiple scattering 

and reflection in random media. 

We used linear acoustics to model sound propagation through a shallow water 

channel with an inhomogeneous sound speed profile as well as a rough surface and 

bottom. The results for cases that are expected to degrade the focusing ability of a 

time reversal array by altering the initial phase information are given. Initial phase 

timing is corrupted by some jitter in the time-domain signals, which affect the relative 

phases of the transmitted array element waveforms. 

The array's focusing appears to hold up well under these circumstances for jitter 

up to 10% to 20% of the narrow-band period. Jitter greater than about 20% of a 

period results in significant loss of focal pressure. These results are confirmed by 

other studies of linear phase quantization errors [62, 70]. The location of maximum 

pressure remained at the location of the source because the jitter is a zero-mean 

random variable, indicating that initial phase of the returned signals is more important 

than the details of the waveform phase shape. This is encouraging, since the data 

aquisition of a broadband time-reversal signal, and the translation of that signal 

into a corresponding high-intensity array pressure output is unlikely with current 

technology. This is especially true if the array consists of elements whose bandwidth 

is significantly greater than PZT transducers. 

Other factors not presented thus far which are detrimental to the focusing of phase 

conjugate arrays are the nonlinear behavior of the medium and the transducer and 

electronics' transfer functions. The nonlinearity of the propagation process plays an 

important role in conjunction with absorption that will be studied in Section 4.5, and 

casts serious doubt on the feasibility of using time reversal systems for real MCM 

applications. 
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4.4    The Effect of Absorption on TRA's 

In this section the linear absorption of the propagation medium will be examined 

as a debilitating factor on the performance of a focusing TRA. The motivation for 

including absorption as a debilitating factor is that some applications for TRA focus- 

ing may be carried out in media where, unlike water, the absorption coefficient may 

significantly affect the propagating waves. 

One example of absorbing media is biological tissue. This section presents an 

example of a TRA in a coupling water bath used to focus acoustic energy onto a 

target inside a modeled human head. The transcranial focusing experiences a drastic 

effect on time reversal when crossing the highly-absorbing bone layer of the skull. 

4-4-1    Violation of Time Reversal Invariance by Absorption 

We use a linear version of the model wave equation (2.21), derived in Chapter 2, 

„2        1 d2p      1 „    „ 2a d3p     n /A   n. 

CQ Otl       pQ       ■ CQUJ* at6 

where the absorption term is written in terms of the absorption coefficient, ct, related 

to the acoustic diffusivity 8 by 

8u2 

a = w. (413) 

If we consider the left hand side (LHS) of (4.12) as a linear differential operator, 

£, acting on the acoustic pressure, we can write (4.12) as 

Cp = LHS(4.12) = 0. (4.14) 

We can test whether the differential operator, C, is time-reversible by examining its 

effect on the forward time solution and its backward time counterpart. If p = <^>(x,f) 

is a forward time solution of (4.12), that is, (f>(x.,t) satisfies 

£<£(x,i) = 0, (4.15) 
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then by direct calculation we can test whether q(x, t) = </>(x, —t) is a solution of the 

wave equation as well. If so, then (4.12) is time reversal invariant, i.e., it holds under 

time reversal. 

Since for r = —t, the partial derivative dr/dt = — 1, upon making the transfor- 

mation t —)■ r, the time derivatives of p are 

d>(x, -t)      d>(x,r) fdr\n =       ra>(x,r) 

ö<n Or"      V^/ ör"     ' 

That the odd-ordered partial derivatives with respect to time undergo a sign change 

is significant in our discussion. This simple fact is correctly cited for holding the key 

to the time-reversibility of the lossless acoustic wave equation, and has been noted by 

Fink [27]. 

Now we substitute for p(x,t) its time-reversed companion solution, q(x, t), into 

(4.12) and use (4.16) to obtain 

Cq 

from which, 

ia2V^?.v^    ''** 
c2dty^      p0       

r    c4\dt 
(4.17) 

(x,-t) 

Cq=C(/)-^w (418) 

Thus we conclude that q(x, t) = ^(x, -*) is not a solution of (4.12) in the presence of 

absorption. Physically speaking, this says that the linear wave equation (4.12) is not 

time reversible due to the presence of the absorption term. 

4-4-S    Example of TRA in an Absorbing Medium 

We use a numerical example to illustrate the detrimental effects absorption has on 

time reversal focusing systems. Figure 4.6 shows the scenario presented in this ex- 

ample, which involves a two-dimensional simulation of the acoustic field due to a line 

array operated as a TRA in a water coupling bath to insonate a scatterer in the human 

brain.  A scatterer is positioned at some location within a cross-section of a human 
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Figure 4.6:  Diagram of the propagation model, showing the position of the linear 
array to the left of the head, and the point scattering target within the brain. 

head containing various inhomogeneous organs, and most importantly, a bone skull 

layer. The propagation properties for the organs and the skull bone were obtained 

from the literature [77, 55, 30]. Ellipses were used to generate the geometrical layout 

of the head cross-section, in a fashion similar to that used to generate tomographic 

phantoms [49, 55]. Twenty-three ellipses were used to construct the 2-D phantom in 

Figure 4.6. A line array of 64 elements were simulated to lie in the water about 1 

cm from the head. Simulations of TRA focusing with and without absorption were 

performed and the results on the focal pressure amplitude were compared. 
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A second-order FDTD solution for the acoustic pressure was solved on the 2-D 

computational domain to simulate an illuminated point scatterer emitting a pulse 

while the array collected data in the receive mode. This step was followed by trans- 

mittal of unamplified time-reversed signals from the array elements, which will focused 

onto the target. Due to the limited aperture provided by the array, not all the il- 

lumination pulse energy was captured by the array. Hence, the time-reversed focus 

amplitude was only a fraction of the original amplitude, even in the lossless case. 

Figure 4.7 shows the time traces of the acoustic pressure as measured at the 64 array 

Time (jis) 

Figure 4.7: Time traces measured by each of the 64 TRA elements during the receive 
phase of the time reversal operation. 

elements. To lowest order, the initial delay time was due to time-of-flight time rep- 

resenting the distance separating the array element and the illuminated target point. 

These were the signals which will be time reversed by the TRA during the transmit 
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phase of the process. 

Figure 4.8 shows the acoustic pressure along the x and the y axes taken through 

the target location at the instant of maximum focusing.  The waveform emitted by 
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Figure 4.8:   Spatial slices of the pressure field along the x and the y axes passing 
through the target at the instant of maximum focusing. 

the target and the waveform returned to the target should be the same, except scaled 

in amplitude and time-reversed. Figure 4.9 shows the original pulse sent out by the 

scatterer during the receive mode in (a), and the time trace at the target location 

upon time reversal focusing from the transmit phase (b). Note that some of the high- 

frequency features have been lost in the two-way propagation. This is because the 

pulse used as the illumination signal was obtained from laboratory measurements with 

broadband instruments of a shock wave generated by a spark lithotripter source, and 

the absorption in the fluid acted as a low-pass filter. For the case where thermoviscous 
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Figure 4.9: Original pressure pulse as sent out by the scatterer (a), and the pulse as 
measured at the target upon time reversal (b) for the case with absorption. 

absorption was included, the focal amplitude was reduced due to linear absorption due 

to thermal and viscous losses, as explained in Chapter 2, and time reversal invariance 

violation, as explained in the previous section. Figure 4.10 shows a comparison of 

peak pressure at the target location at the time of maximum focusing. The spatial 

slices through the target location at the instant of maximum acoustic focusing pressure 

show that the lossless case provided a much higher amplitude at the focus. In our case 

the peak pressure at the focus for the lossless case was 2.2% of the original pressure of 

the scatterer pulse. When absorption was taken into account the pressure at the focus 

dropped to 1.3% of the maximum pulse pressure. This reduction in focal pressure by 

about one half was due to the two effects mentioned in the previous paragraph. The 

reduction in focal pressure is not due to propagation impediments such as enhanced 

acoustic impedance mismatch for example. The same sound speeds and densities are 

used for both lossless and lossy simulations. The severe inhomogeneity (the skull 

layer) was responsible for the fact that focal pressure was so low compared to a case 

where no absorption would occur. For this reason a section of skull bone is normally 

removed surgically from the array aperture prior to insonation of the brain in animal 
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Figure 4.10:   Acoustic pressure at the focus at the instant of maximum focusing, 
showing the lossless case achieving almost twice the peak pressure as the lossy case. 

experiments. Otherwise the large absorption in the skull bone would cause excessive 

heating near the skull. This aspect of biomedical acoustics will be discussed in detail 

in Chapter 5, which deals with hyperthermia applications. 

Finally, we present snapshots of the acoustic pressure for both the lossless and 

the lossy simulations. Figure 4.11 shows one snapshot of the pressure field during the 

receive mode of the TRA operation, where (a) is the lossless case and (b) is the lossy 

case. Then a pair of frames are taken from the transmit stage of the TRA operation 

at the instant of maximum focusing. Frame (c) is the field for the lossless simulation, 

and frame (d) is the field at the same time for the lossy simulation. While the gray 
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Figure 4.11: Snapshots of the acoustic pressure during the receive mode (a) and (b) 
and the transmit mode at focusing (c) and (d). The frames on the left (a) and (c) 
are for the lossless simulation, while the frames on the right (b) and (d) are for the 

lossy simulation. 

scale was fully utilized in each of the four frames, the scales to the side show that 

the peak pressure for the lossy case was about one half of that of the lossless case. 

Also it can be seen from the transmit mode frames and from Figure 4.10 that the 

full-width-at-half-maximum (FWHM) for the lossy case is increased. In this example, 

the FWHM went from 4 mm for the lossless case to 9 mm for the lossy case. 

We have seen how absorption can degrade the focusing ability of a TRA. It might 

seem that one solution to partially overcome this debilitating effect is to amplify the 

signal at the array. However, if the amplification is such that the signal is of finite 

amplitude we encounter further debilitating effects due to nonlinearity, which will be 

discussed in the next section. 
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4.5    The Effect of Nonlinearity on TRA's 

Nonlinear propagation in absorbing sound channels is proposed as a debilitating factor 

to time reversal array system performance. Since we have seen the detrimental effect 

of linear absorption on TRA's in the previous section, we investigate the combined role 

of absorption and nonlinearity in this section. Here we ask the question: what extra 

role if any does nonlinear propagation of finite-amplitude sound play in degrading the 

time reversal invariance of a TRA? 

4-5.1    Background for Nonlinear TRA Analysis 

We now look at the effect of finite-amplitude (nonlinear) propagation on time rever- 

sal systems operated in lossless and in lossy media. A finite-amplitude sound wave 

distorts as it propagates through the medium. The distortion is manifested as a trans- 

fer of energy from the originial frequency spectrum into higher harmonics. Because 

most media exhibit absorption that increases with frequency, one might expect that 

nonlinear distortion would lead to greater absorption, and hence worse time reversal. 

Muir et al. [59] conducted an experiment where a finite-amplitude sinusoidal pulse 

was propagated through water and then reflected off of a pressure-release surface. 

For their pulse the pressure-release surface caused an amplitude multiplication by 

— 1, which for a sinusoidal signal is similar to introducing a 180° phase shift. They 

found that the pulse undistorted after reflection, which suggests that time reversal 

invariance may hold in the presence of nonlinear distortion. In other words, while it 

was not a time reversal operation, the experiment showed that nonlinear distortion 

effects could be undone. 

The setup for the problem under study is as follows: a source emits a plane wave 

acoustic pulse which propagates to a time reversing array of two elements, positioned 

on either side of the source. The acoustic field recorded by the array is time reversed, 

and then retransmitted.   This simple setup is suitable for studying the effects of 



56 

nonlinear distortion of an acoustic field. Of particular interest is the debilitating 

effect that nonlinearity may have on a time reversal system's ability to form an intense 

focus near the original source. This is of practical interest to those wishing to use 

time reversal systems to achieve high-intensity acoustic fields at a target, such as in 

the destruction of kidney stones by lithotripsy [67], the ablation of tumors in tissue 

[66], or the remote neutralization of mines at sea [41]. 

Two scenarios were studied: first, a finite-amplitude pulse was emitted from a 

source and propagated outward to the time reversal array (the receive stage of the 

time reversal operation). The signal was then time reversed and retransmitted from 

the array elements (the transmit stage of the time reversal operation). We label this 

scenario the nonlinear-nonlinear case because the traveling pulse had finite ampli- 

tude during both the receive and the transmit stages of time reversal, and hence, 

undergoes nonlinear effects during both stages of the process. The second scenario 

considered was where the source emitted a low-amplitude pulse, which propagated 

without appreciable nonlinear steepening to the array during the receive mode, fol- 

lowed by amplification of the time-reversed signal at the array during the transmit 

mode. The amplification for the transmit mode propagation led to nonlinear dis- 

tortion of the pulse. This case is referred to as the linear-nonlinear scenario in our 

study. 

4.5.2    The Nonlinear Absorbing Wave Equation 

The model equation used in this study for propagation of finite-amplitude acoustic 

pressure pulses, p(x,t), in a thermoviscous medium was derived in Chapter 2, 

_a    1 a2\     vPo _  , sd3
P    ß ay , 

v -7oW>)p-W-Vp+4W + ^4lw=0- (4-19) 

The last term on the left hand side of (4.19) is the nonlinear term, discussed in 

Chapter 2. 

The most salient features of pulse propagation in an absorbing nonlinear medium 
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x (shifted to overlay traces) 

Figure 4.12: Comparison of the pulse used in the present study as emitted from the 
source (solid line) and as observed some time later (dashed line). The pulse steepens 
due to nonlinearity and decays due to absorption. 

are the amplitude reduction due to absorption and the waveform distortion, or shock- 

ing, due to the nonlinearity. An example of the pulse used in this study before and 

after propagating some distance in an absorbing nonlinear medium is shown in Fig. 

4.12. 

4-5.3    The Conditions for Time Reversal Invariance 

Following the method used in the section 4.4, we now consider the left hand side (LHS) 

of (4.19) as a nonlinear differential operator, T>, acting on the acoustic pressure, and 
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write (4.19) as 

Vp = LHS(4.19) = 0. (4.20) 

If p == <f>(x,t) is a forward time solution of (4.19), that is, <f>(x,t) satisfies 

2ty(x,i) = 0, (4.21) 

then we can test whether q(x, t) = </>(x, -<) is a solution of the wave equation. If 

so, then (4.19) is time reversal invariant, i.e., it holds under time reversal. We can 

expect the absorption term to lead to time reversal invariance violation, as was found 

in Section 4.4, but we will also uncover effects due to nonlinearity. 

Substituting for p(x,t) its time-reversed companion solution, q(x.,t), into (4.19) 

we obtain 

192\J     Vp   _ ,      8 fd3c/>\      ß d24>2' 
Vq = 

from which, 

v2 - jije) t-y-^-7* [W) + pc* w (4.22) 

Thus we conclude for the nonlinear absorbing wave equation that q(x, t) = <^>(x, —t) 

is not a solution of (4.19) in the presence of absorption, as for the linear absorbing 

wave equation. 

Mathematically, the result indicates that the nonlinear term itself is not respon- 

sible for time reversal violation. However, as stated earlier, real nonlinear wave prop- 

agation is always accompanied by absorption in the medium. The result is an ir- 

reversibility of nonlinear acoustics. Therefore, for finite-amplitude propagation we 

would expect a degradation of the performance of a time reversal system. The above 

discussion applies to our first test scenario for this study, the nonlinear-nonlinear case. 

Now we modify the analysis for the second scenario under study, the linear- 

nonlinear case. If the acoustic pressure received is not only time reversed, but am- 

plified, then the correct test for time reversal invariance checks V for the case where 
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q(x,t) = a0(x, — t), where a is a constant real amplification factor. In this case a<^> is 

substituted for <j> in (4.22), 

Vq 
,      1  d2\±     V/>   „^      5 (dzacf>\       ß d2(a(f>)2 

(4.24) 
(x-t) 

(4.25) 
c4 d*3 v >c4 di2 

Note that the propagation is strictly "nonlinear" in both travel directions, but the 

nonlinear effects are negligible during the first (receive) leg of the travel due to low 

amplitude. The amplitude is amplified by using a » 1 for the transmit mode of the 

operation. 

The result above shows that when the signal undergoes amplitude amplification, 

time reversal invariance in a nonlinear medium no longer holds, even if the fluid is 

lossless. For time reversal invariance to hold for nontrivial solutions this case requires 

that 

1. a = 1 or ß = 0, and 

2. £ = 0. 

The physical explanation is that aside from pure scaling of the solution, the change 

in signal amplitude from receive to transmit modes implies that different nonlinear 

distortion occurs during the two stages of the time reversal process, which will inval- 

idate the time reversal invariance. While not strictly a violation of reciprocity, this 

is analogous to doing time reversal in a medium which was not steady for the dura- 

tion of the two stages of the time reversal process. The receive and transmit mode 

propagation occur in what is essentially different filters in the channel. 

4-5.4    Numerical Study of Finite-Amplitude TRA's 

Numerical simulations were used to investigate the behavior of time reversal systems 

while controlling the absorption coefficient and the coefficient of nonlinearity in the 
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wave equation. The peak pressure amplitude in the receive mode (at the source) and 

in the transmit mode (at the array) was independently controlled also to allow for 

one-way or two-way finite-amplitude propagation, as desired. 

4.5.5   Description of the Nonlinear TRA Simulations 

The wave equation (4.19) was solved numerically for the acoustic pressure, p, using a 

finite-difference time-domain (FDTD) code. The finite differencing was fourth order 

accurate in space and second order accurate in time. The simulations were performed 

for a homogeneous thermoviscous fluid. Numerical considerations such as stability 

and numerical dispersion limited the parameter space which could be covered using 

the explicit FDTD method used. However, good resolution of the acoustic pressure 

field was possible for the range of parameters used in this study. 
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Figure 4.13: Geometry of the plane wave time reversal simulations showing a temporal 
snapshot in the array receive mode. The source is at location B, while the two array 
elements are at locations A and C. 
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4-5.6   Run Geometry and Parameters 

The simulations were carried out in a one-dimensional coordinate system with x 

denoting the spatial coordinate. The source from which the source pulse was emitted 

is located at x = 0. Fig. 4.13 shows the location of the source and the elements 

with relation to each other. The source element (B) was driven with a sinusoidal 

burst, shown in Fig. 4.12, having a duration of 6 fxs, a center frequency / = 1 

MHz, and a Gaussian envelope. The driving pressure waveform applied at the source 

had a maximum pressure amplitude of 1 MPa for the simulations requiring nonlinear 

receive mode propagation, and 1 Pa for those requiring linear propagation in the 

receive mode (where the computational domain was much shorter than the shock 

formation distance). 

The calculations presented in this study were for a fluid having a small signal 

sound speed c = 1500 m/s, and density p = 103 kg/m3, but otherwise was not 

meant to represent water. The values chosen for the absorption and the nonlinearity 

coefficients, as well as the frequency and the peak pressure of the pulses cover a 

parameter space well-suited for the numerical method used in the study. Effects such 

as absorption and nonlinearity are cumulative, and will manifest themselves in the 

waveforms over some distance and time. In this study, we attempted to demonstrate 

the effects under study over a span of 50 wavelengths using full wave simulations 

suitable for detailed study of the pulses in space and time. The values of a and ß are 

not those of any specific fluids, and are chosen to have an effect on the propagation 

over the distance used in the simulations. We could have alternatively used the value 

of peak acoustic pressure to vary the shock formation distance, for example. 

In order to simplify and generalize the results some useful quantities which were 

discussed in Chapter 2 are repeated here for convenience. The acoustic Mach number 

e = ^, (4.26) 
pcl 

where p0 is a characteristic acoustic pressure of the pulse.   The shock formation 
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distance, xshock, is the distance a sinusoidal plane wave travels before developing a 

shocked profile, and is defined by 

«shock = -x-T, (4-27) 

where k is the wave number given by 2irf/c Note the dependence of e, and hence 

«shock, on the peak pressure amplitude, p0. Finally, the Gol'berg number, 

T = Si, (4.28) 
a X 

is used, where A = 2ir/k. 

4.5.7   Results for Finite-Amplitude TRA 's 

We have seen in Section 4.5.3 that the absorbing nonlinear wave equation treated 

as a differential operator acting on the acoustic pressure should be time-invariant 

when the absorption term is negligible for the nonlinear-nonlinear scenario. For the 

linear-nonlinear scenario, we also saw that the absorption has to be negligible, but 

in addition, that either the amplification at the array must be negligible (a - 1) or 

the nonlinearity coefficient must be negligible (ß = 0). In this section we show the 

relative importance of the nonlinearity and the absorption in time reversal using the 

two scenarios: 

1. Nonlinear-Nonlinear time reversal: In this scenario the source is driven with 

a high peak amplitude (1 MPa), resulting in nonlinear steepening occurring 

during the array receive mode. The detected signals at the array elements are 

time reversed without modification to the amplitude of the signals at the array 

elements. The retransmitted pulses leave the array with a significant fraction of 

the original source amplitude, and nonlinear effects occur during the transmit 

stage of the time reversal as well. The values of the absorption coefficient, a, and 

the nonlinearity coefficient, ß, were controlled, and were the same for a given 

run for both the receive and the transmit stages of the time reversal operation. 



63 

2. Linear-Nonlinear time reversal: A low-amplitude (1 Pa) pulse was emitted from 

a plane source. The pulse was then captured by two array elements positioned 

on either side of the source. The received signals were time reversed and retrans- 

mitted from the array elements (also plane sources), but the amplitude of the 

retransmitted signal was amplified at the array by scaling it up to 1 MPa peak 

pressure. Again, various values of a and ß were used to investigate the effects of 

time reversal in nonlinear absorbing media. For this scenario the low amplitude 

of the receive mode propagatipn ensured that the outgoing pulse propagated 

without undergoing nonlinear distortion, as the shock formation distance was 

much larger than the propagation distance. The array transmit stage, on the 

other hand, caused the pulse to undergo significant distortion due to the large 

pressure amplitude provided by the array. 

4-5.8    Nonlinear-Nonlinear Time Reversal 

This case may apply if either a large target is interrogated or illuminated by a high- 

amplitude pulse, or if a source emits a high-amplitude pulse to be time reversed. Here 

we expect waveform steepening during both stages of the time reversal process, as 

the signal will have appreciable amplitude during both the receive and the transmit 

modes. Note that capturing and retransmitting a shocked waveform experimentally 

requires broadband array elements and electronics to obtain good fidelity. 

A reference simulation was run in which both the absorption and the nonlinearity 

were suppressed by setting a = 0 and ß — 0. This run gave data for the "ideal" 

time reversal case, as would be expected given our earlier analysis. The peak positive 

pressure obtained at the source/target location upon time reversal is denoted by 

Karget- m *^s case' *ne waveforms emitted by the source were fully recovered in 

shape and amplitude back at the source position following the time reversal operation. 

Note that p*arget for the nonlinear-nonlinear scenario was not the same as parget f°r 
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Figure 4.14: Nonlinear-nonlinear time reversal: Greatest positive half cycle of the 
pulse at the target, normalized to the ideal case (a = 0, ß = 0), for different values of 
ß, with a = 10 Np/m. Note that some numerical error is noticeable in the waveform 

for the case ß = 40. 

the linear-nonlinear scenario, but within each scenario, pressures were normalized to 

the peak target pressure for the ideal case at hand, a = 0 and ß = 0. 

Fig. 4.14 shows the time trace of the largest positive half cycle at the target upon 

time reversal, normalized to Karget- For tne case of a = 10 Np/m, we found that the 

best retrofocusing, with /? = 0, resulted in only 47% of Karget- When ß was increased 

such that the source-to-array separation, zsrc-array, was 1 shock formation distance, the 

peak target pressures achieved were about 37% of Karget- Tne Pea^ target pressure 

decreased monotonically to about 23% of Karget f°r a ^Wan-ay of about 1.8 a;shock, or 
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Figure 4.15:   Nonlinear-nonlinear time reversal:   Greatest positive half cycle of the 
pulse at the target for different values of /?, with a = 20 Np/m. 

a ß of 40. 

For a higher absorption value, a = 20 Np/m, the pressure at the target was even 

lower, see Fig. 4.15. Here the peak positive target pressure for ß = 0 was about 

24% of parget due ^° ^e high absorption, and became less as ß was increased through 

50, where peak pressure was only 13% of Ptarget at a source-array separation of about 

Z.O ^shock- 

Fig. 4.16 shows how peak pressure at the target varied as a function of nonlinearity 

for a — 10 and 20 Np/m. Nonlinearity is measured in terms of the number of shock 
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Figure 4.16: Nonlinear-nonlinear time reversal: Comparison of peak pressure at the 
target for different values of/?, with a = 10,20 Np/m. While source-to-array distance, 
^src-array is constant, increasing ß reduces the shock formation distance rcshock- 

formation distances separating the array and the target. This can be related to ß by 

Xsrc-array = 507T/?e. (4.29) 
•''shock 

It was noticed that the rate of evolution of such mature pulses slowed down, as the 

creation of harmonics by nonlinearity was brought into balance with their absorp- 

tion. Also, once significantly attenuated, the waveforms did not experience as much 

nonlinear distortion, owing to their smaller pressure amplitude. 

As a measure of the effect of nonlinearity, when compared to the case ß = 0, we 

noted a relative decrease in peak target pressure of about 22% when the source-target 

separation was 1 shock formation length for a = 10 Np/m, and about 17% decrease 

for a = 20 Np/m. 
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Figure 4.17: Linear-nonlinear time reversal: Greatest positive half cycle of the pulse 
at the target for different values of ß, with a = 10 Np/m. 

4-5.9   Linear-Nonlinear Time Reversal 

This scenario is the most common in acoustic phase conjugation experiments, where 

the source emits (or target is interrogated with) low-amplitude pulses, but in the 

transmit mode the retransmitted time reversed pulse is highly amplified. In these 

simulations the source emitted a 1 Pa acoustic pulse, which was captured by the 

array elements and retransmitted at 1 MPa, an amplification factor of a « 106, or 

120 dB. 

Fig.   4.17 shows results from the case where a = 10 Np/m, and ß was varied 

between 0 and 40, corresponding to T between 0 and 7.5.    It was observed that 
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Figure 4.18: Linear-nonlinear time reversal: Greatest positive half cycle of the pulse 
at the target for different values of /?, with a = 20 Np/m. 

in all of the runs having absorption the peak pressure at the target following time 

reversal was lower than Karget- This is to be expected from our proof in section 4.5.3. 

In addition, a monotonic decrease in retrofocusing peak pressure was observed with 

increasing nonlinearity parameter. Above a ß of 40 the waveforms were too shocked to 

be simulated using the current method. The best result for this absorption value was 

obtained for ß = 0, in which case the peak pressure at the target was 69% of Ptarget. 

As ß was increased, equivalent to increasing the source-target separation up to about 

3.3 shock formation distances, the peak target pressure was reduced to about 51% 

of p*argef So while the absorption was clearly responsible for time reversal focusing 

degradation, the presence of nonlinearity and the amplification at the array further 
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reduced peak target pressure by a further 25%. 

More dramatic effects were seen when the absorption was increased to 20 Np/m. 

Fig. 4.18 shows the peak pressure half cycle at the target for the higher absorption. 

Here ß was varied from 0 to 70 before numerical errors developed in the highly shocked 

waveforms. As before, the best time reversal refocusing was obtained when ß was 

zero. In this" case the peak positive pressure at the target was 50% of Ptarget. As ß 

was increased to 70 (a Y of 6.5), the peak attainable pressure dropped to less than 

30% of pi t. The effect of both a and ß on the peak positive achievable pressure at 

the target normalized to p*arget is shown in Fig. 4.19 for the linear-nonlinear scenario. 

As a measure of the effect of nonlinearity in the linear-nonlinear scenario, when 

compared to the case ß = 0, we noted a decrease in peak target pressure of about 8% 

when the source-target separation was 1 shock formation distance for a = 10 Np/m 

and about '6% for a = 20 Np/m. This was about one third the relative decrement 

noted in the nonlinear-nonlinear scenario. 

We further note that in comparison to Figs. 4.14 and 4.15 where approximately 

sinusoidal waveforms were recovered, Figs. 4.17 and 4.18 show highly distorted pulses 

recovered at the target. This is because in the linear-nonlinear scenario there is no 

nonlinear distortion from the receive mode to be undone by the distortion in the 

transmit mode, recall Muir's aforementioned experiment [59]. This could pose a 

problem in applications where pulse shape reconstruction is a measure of time reversal 

system performance. 

4.6     Conclusions 

This chapter described time reversal arrays, and studied the effects of various debili- 

tating factors on the ability of time reversal systems to form intense pressures at the 

focus of the TRA. Initial phase uncertainty was studied in a simulated shallow water 

channel containing inhomogeneities and multipath reflections. It was found that the 
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Figure 4.19: Linear-nonlinear time reversal: Comparison of peak pressure at the 
target for different values of/?, with a — 10,20 Np/m. While source-to-array distance, 
^Wan-ay is constant, increasing ß reduces the shock formation distance schock- 

maximum allowed delay errors in the initial signal phasing was equivalent to about 

1/6 of a cycle for a periodic signal. Most applications of time reversal systems in 

acoustics exploit their ability to backpropagate acoustic energy to a scattering target 

or a source. As such, it is important to know the limits of usefulness for such retrodi- 

rective focusing, or the potential for achieving maximal intensity at the focal spot. 

One issue known to plague time reversal systems is absorption in the propagation 

medium. Amplitude compensation has been used with some success to correct for 

amplitude distortion [66], but such techniques have not been explored for nonlinear 

propagation, in which case the amplitude compensation at the array will have detri- 

mental effects of its own. This study assumed that the effectiveness of a time reversal 
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system can be measured solely by the amplitude of the pressures at the target. How- 

ever, in some cases the waveform shape may also contribute to the fidelity of the time 

reversal. Under nonlinear propagation conditions this fidelity will be compromised 

by the tendency for the positive portions of the waveform to travel at greater sound 

speed than the negative portions of the waveform. 

It was shown that time reversal focusing can still occur in absorbing media, since 

the phasing of the signals is not affected, however, the absorption leads to a violation 

of time reversal invariance, and hence the effectiveness of the TRA is compromised if 

the goal is achieving a high-intensity focus. While the spatial extent of the focal spot 

is unaffected by the inclusion of absorption, the reduction in peak amplitude causes 

an increase in the FWHM of the focus. 

Since most media exhibit a frequency power law of absorption, it is important 

to know what effect the nonlinear harmonic generation will have on time reversal 

systems if they are to be used at finite amplitude. Another issue raised by this 

study is how amplification of the signals received by the array elements will com- 

promise the time reversal process. We showed that for the nonlinear-nonlinear case 

the nonlinearity in the wave equation only affects the time reversal invariance in that 

it introduces extra absorption due to the generation of higher frequency content in 

an acoustic waveform. This indirect effect appears to be nearly as important as the 

medium's absorption coefficient in cases where well-formed shock waves appear, or 

where propagation over several shock formation lengths occurs. Caution is in order 

if one contemplates increasing the gain on the time reversal array element amplifiers 

in an attempt to overcome the focusing loss, as in the linear-nonlinear case. Since 

the shock formation distance is directly related to the peak source pressure, shock 

formation will occur sooner, leading to a reduction in the performance of the system 

for a given source-array separation. We conclude that altering the amplitude of the 

time reversed signals at the array will lead to degradation of the focus in a nonlinear 

propagation situation, even if the medium is lossless. 
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It was shown that for propagation over several shock formation distances the ef- 

fects of nonlinearity-enhanced absorption are almost as important as the effects of 

the absorption itself. The extra absorption of shocked waveforms will significantly 

degrade the ability of a time reversal system to deposit a high-intensity acoustic pres- 

sure field onto a target. Additionally, amplitude alteration at the array elements in 

a nonlinear medium can have detrimental effects on the time reversal array's perfor- 

mance. These results have implications for future uses of high-intensity acoustic time 

reversal systems such as mine neutralization, hyperthermia, and lithotripsy using time 

reversal arrays. 
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Chapter 5 

TISSUE HYPERTHERMIA USING FOCUSED SOURCES 

5.1    Introduction 

There exists ample motivation to explore the possibility of performing noninvasive, or 

bloodless, treatment of deep-seated tumors in the human body. Traditional surgery to 

reach and remove tumors requires cutting a path to the affected region, controlling the 

damage to the intervening organs, controlling the resultant bleeding, and maintaining 

infection-free conditions during and after the surgery. The concept of using focused 

ultrasound to destroy the offending tumor tissue by heating it until the affected cells 

die due to the thermal dose was postulated almost half a century ago [29]. It is only 

recently that the technology to build and control and image the focused ultrasound 

surgery has become possible. These efforts have intensified in the past ten years, as 

successful experiments in animals have been conducted, and a small but aggressive 

industry now seeks to test and license such devices for treatment in humans. 

General descriptions of focused ultrasound surgery (FUS), also known as high- 

intensity focused ultrasound (HIFU), are given in Hynynen [47], ter Haar [65], and 

Sanghvi and Hawes [63]. Research on therapeutic ultrasound is interdisciplinary, and 

is of interest to scientists working in medical applications as well as clinicians with 

some grasp of the physics and engineering of ultrasound. This study maintains the 

perspective of physical acoustics and does not emphasize the pathology of cell injury. 

The mechanism for the destruction of the afflicted tissue sites is known as necrosis, 

associated with the pathologic change following progressive degradation due to lethal 

injury of living cells. Cell structure and membranes are known to suffer as a result of 
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thermal overdose from the deposition of acoustically-driven heat in the tissue. Other 

mechanical damage, notably as a result of cavitation are known to occur at high 

intensities [46, 71], but are not investigated here. 

Because of the complexity of propagation in biological tissue, analytical and com- 

putational solutions to pressure field and heating calculations can only be obtained 

using simplifications and assumptions. For example, when describing medical ultra- 

sound devices and their effect it is common to find the assumption that the propaga- 

tion medium is homogeneous [9,15], linear [36, 56, 58, 39], or both [14, 24, 74, 32, 35]. 

Sophisticated numerical studies have been conducted recently whereby measured tis- 

sue properties are used in the calculation of acoustic fields [57, 38, 40]. 

Despite the recent advances in computational power, realistic three-dimensional 

simulations remain slow, costly, and conspicuously absent from the literature. One 

reason for this other than the computing shortage is that 3-D measurements in tissue 

would require unconventional measurement techniques such as MRI or tomography, 

and would be much more difficult to obtain. Some important problems in wave prop- 

agation can be studied using finite-difference methods in 2-D. This chapter presents 

results from simulations of therapeutic ultrasound in tissue-like media. The questions 

addressed are: what are the effects of nonlinearity and absorption on the propagation 

and heating of a focal region? and what is the effect of medium inhomogeneity, and 

the effect of temperature-dependent tissue parameters on the heating behavior near 

the focus of therapeutic ultrasound devices? Single pulse and continuous wave (CW) 

simulations were carried out. The modeling of the acoustic propagation and focused 

sources has already been given in Chapter 2. In this chapter a common model for 

the thermal behavior of tissues, known as the bioheat equation, will be explained, 

and means of coupling the acoustic and the thermal aspects of the problem will be 

presented. 

The simulations address the following phenomena and their effect on transient 

and steady-state acoustic pressure and temperature fields: First, the nonlinear effects 



75 

resulting from propagation from pulsed devices which can produce finite-amplitude 

effects. Second, the effect of inhomogeneities in two dimensions, as deduced from 

simulations in data from slices of human tissue obtained by experimental measure- 

ments, reported by other researchers. Third, the effect of temperature-dependent, 

time-varying tissue background parameters. It is found that inhomogeneity of soft 

tissue can have the effect of displacing and breaking up the site of sound and heat 

deposition, but will have little effect on the overall thermal dose. Finite-amplitude 

effects are more important in calculating the size and temperature of the hot spot. 

Temperature-dependent tissue characteristics appear to be quite important in predic- 

tion of thermal effects of focused ultrasound from CW devices. 

5.2    Heating Model: The Bioheat Equation 

As a consequence of the thermal and viscous properties of fluids, energy loss results 

when an acoustic disturbance passes through the fluid. The acoustic wave deposits 

the absorbed energy as heat [61, 14, 74]. For the case of tissue, a linear bioheat 

equation commonly used to describe the thermal effects [16] is 

where T is the difference between the tissue temperature and the ambient (arterial) 

temperature (37°C), Kflss is the thermal conductivity of the tissue (0.6 W/m-K), 

CtiSs is the heat capacity (3700 J/kg-K), Wb is the perfusion or cooling by blood flow 

(0.5 kg/m3-s), Cb is the heat capacity of the blood (3800 J/kg-K), Ta is the ambient 

arterial temperature, and Q is the heat deposition source term, described in Pierce 

[61], 

0=^(|)2. (5.2) 
POCQUJ* \ot J 

We assume that a is the loss due to absorption, and scattering loss is negligible in 

the attenuation of sound.  In a thermoviscous fluid, the absorption a is related to 6 
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and w = 2TT/ by [42] 

8 = ^ (5.3) 
a>2 

5.£.i    FDTD Solution of the Bioheat Equation 

In a manner analogous to the solution of the wave equation, we solve (5.1) using 

the FDTD method. The partial derivatives are discretized to second order, and 

the temperature is advanced in time from one time step to the next. Define the 

variables on the interior grid cells having spatial and temporal discretization Sx and 

St respectively, 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 
Pi,j  Cjj w- 

and 

VxiJ   =   TOu - 2ITj + 2?-u), (5-11) 

VviJ   =   TO+I-^ + ITJ-I), (5-12) 

Vaij   =   (T?j-Ta). (5.13) 
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1 
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The partial derivatives are written to second order 

dT       A   v 
m=AtVt' 

d2T 
■^ = AX K, (5.14) 

d2T _ 
~dtf=Ay Vy' 

and the source term, Q" • can be calculated from 

Qh = D^At
2{p^-p^f. (5.15) 

The bioheat equation then can be used to solve for the temperature at the next time 

step, n + 1, 

rpn+l _ (_\2 Bij(Ax VXij + Ay Vyij) — Cij Vaij +      J, + 1TJ-1.       (5.16) 

5.3    The Effect of Nontinearity: Single Pulse Simulations 

Theoretical and experimental studies of nonlinear propagation and focusing in tissue 

and tissue-like materials have shown that increased heating will result from steepened 

or shocked waveforms in tissue. There has been increasing interest in the use of high 

intensity ultrasound in tissue. At high intensities finite-amplitude effects can lead 

to the production of nonlinearly generated harmonics. These harmonics have been 

exploited in recent years to improve imaging capabilites in diagnostic ultrasound 

machines - a technique commonly referred to as harmonic imaging. In addition, 

focused ultrasound surgery (FUS) is a promising technique that uses high-intensity 

ultrasound to destroy tissue in a confined region which will avoid the necessity of 

traditional invasive methods. 

The explanation for increased heating from nonlinear ultrasonic applicators is 

explained by Wu and Du [75] and Bacon and Carstensen [3], and can briefly be sum- 

marized as follows: Most materials exhibit a frequency power law for the absorption of 

sound, i.e., the conversion of acoustic energy into heat energy. For single-frequency 
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waves, the small signal absorption coefficient, a, depends on the frequency of the 

acoustic waves, /, and a real exponent, u, 

a~/", (5.17) 

where v is between 1 and 2, and is about 1.1 for most soft tissues [2]. The nonlinear 

generation of higher-frequency harmonics implies excess absorption will occur for 

steepened or shocked waveforms. 

While bioeffects have been widely studied in the laboratory [65], it is difficult to 

obtain detailed spatial measurements without disrupting the acoustic field. It has 

been known for some time that high intensity ultrasound, and the accompanying 

finite-amplitude effects result in different bioeffects than linear propagation would 

predict [3, 10]. In a thermoviscous fluid, the absorption is proportional to the square 

of the frequency, so as higher frequency content is generated during wave steepening, 

it has been shown that increased heating will result. 

5.3.1    Results of the Nonlinear Simulations 

Some simulation results are shown in this section to illustrate the output of the 

numerical code. The example outputs are for a focused bowl source array of 64 simple 

sources having azimuthal symmetry. The source was driven by a 1 MHz sinusoidal 

burst of 6 cycles modulated by a Gaussian envelope in time. The geometric focus of 

the array was situated 3 cm from the array face. The source aperture was 4 cm; the 

computational domain spanned an area of 5.12 cm x 5.12 cm. The grid spacing was 

Ax = Ar = 0.1 mm and At = 10 ns. 

The propagation medium was modeled as a tissue-like material, having properties 

similar to those reported in the literature for soft tissue.13 The parameters used in 

the acoustic problem were: c0 — 1600 m/s, p0 = 1100 kg/m3, a = 4.5 Np/m, and 

ß = 5.5. For the bioheat equation the following parameters were used: kt = 0.6 

W/(m-K), Ct = Cb = 3800 J/(kg-K) and Wb = 0.5 kg/(m3-s). Figure 1 shows some 
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Figure 5.1: Snapshots of the pressure (top row), and temperature (bottom row) for 
the 1 MPa nonlinear simulation. The axes are labeled in cm. 

snapshots of the pressure and temperature fields resulting from nonlinear propagation 

in the medium. 

Figure 5.3.1shows axial slices of the temperature fields at 32 fis for linear and 

nonlinear simulations at source pressures ranging from 1 MPa to 10 MPa. The linear 

simulations were achieved by setting ß to zero. Temperature elevation increased with 

source pressure. For nonlinear simulations excess heating increased dramatically for 

source pressures above 5 MPa. For the 1 MPa nonlinear simulation the the heating 

was only 2% above the linear predictions and at 2 MPa the excess heating was 4%. 

However, at 5 MPa excess heating was 27% and at 10 MPa it was 80%. High source 

levels were required to observe excess heating because the entire propagation path was 
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(a) Axial slices of the temperature at 32 fis for various source 

pressures with and without nonlinearity. (b) Peak temper- 

ature elevation for several source conditions, showing the 

increasing effect of nonlinear distortion. 

modeled as tissue. Tissue has a relatively large absorption and prevents steep shocks, 

with significant harmonic content, from forming. For propagation through water, 

which is much less absorbing, steep shocks occur much more readily and consequently 

excess heating becomes important at lower source levels. 

5.3.2    Conclusions from the Nonlinear Effect Simulations 

Accurate knowledge of the behavior of ultrasonic beams in tissue allows for better 

prediction of bioeffects of ultrasound, and improved treatment and device design. The 
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FDTD method for simulation of transient finite-amplitude acoustic fields has been 

described with an application in medical ultrasound used as an example. Heating 

in tissue, modeled as a thermoviscous fluid, was obtained for a short acoustic pulse 

from a focused bowl source. Peak temperature rises from a 1 MHz ultrasonic pulse 

propagating nonlinearly through a tissue-like material was observed to depend on the 

degree of nonlinear distortion and ranged from 2% to 80% excess temperature rise for 

1 MPa to 10 MPa source pressure conditions. 

5.4    The Effect of Inhomogeneity: A 2-D Study 

In this section we look at the role played by tissue inhomogeneity in the context 

of nonlinear therapeutic ultrasound propagation. A 1 MHz pulse of ultrasound is 

propagated using FDTD simulations in 2-D Cartesian coordinates. The propagation 

medium was constructed from 2-D measurements of tissue propagation delay times 

obtained from researchers at the University of Rochester, described by Hinkleman, 

et aL, [43, 44]. The data were adapted for our use in the simulations by scaling the 

magnitude of the inhomogeneity in sound speed, density, absorption coefficient, and 

nonlinearity coefficient to the desired contrast. In the original study, human breast 

and abdominal wall tissue slices were preserved, and delay times were measured at 

fine intervals across the samples, generating a 2-D map of the inhomogeneities in the 

samples. One such sample is used in this study. It can be expected that local effects 

such as diffraction and hot spot distortion occur in inhomogeneous media. We look 

at this effect in the context of therapeutic ultrasound as a function of the strength of 

the inhomogeneity. 

5.4-1    Description of the Propagation Medium 

The inhomogeneity contrast (magnitude of the variations in background propagation 

parameters) is controlled for the study, and varies from ±0% (homogeneous tissue) 
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Figure 5.2: The sound speed used for the ±10% inhomogeneity contrast case, having 
a base value of 1600 m/s in tissue half plane, and 1500 m/s in the water half plane. 
The position of the curved source and geometric focus are also shown. Note that the 
source is slightly offset to the left to avoid the occurrence of left-right symmetries 
about the center. 

to ±20% contrast. The following assumptions are made in generating the data files 

for the background properties: 

1. Data was only provided for delay time, or sound speed. We assume the inho- 

mogeneous contours for sound speed delineated regions of different tissue type 

and composition. Hence it is assumed that all tissue properties vary along the 

same contour lines in space. 

2. The percentage of contrast in each of the background properties is the same. 
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i.e. a ±10% variation in sound speed implies a ±10% variation in density, etc. 

3. There exists a qualitative correlation between the sign of the variation in the 

properties compared to the time delays. The assumption used here is that 

sound speed, density, and absorption coefficient have the same tendency to 

increase or decrease together, while the nonlinearity coefficient tends to violate 

this direction, i.e. a ±10% variation in sound speed corresponds to a =FlO% 

variation in nonlinearity coefficient. This last assumption is borne by qualitative 

examination of tissue measurement data given in the literature [33, 34, 77]. 

It is known that realistic 3-D inhomogeneities will have a quantitatively different 

effect than the present 2-D inhomogeneities, but 3-D data is not available for such 

a study at this time. We expect 3-D diffraction to have a more severe effect on the 

pressure and temperature fields than 2-D diffraction, and so the results reported here 

are expected to be conservative in their estimation of real body effects. 

The inhomogeneous initial condition data file for a medium parameter, Xo(%,y), 

which is a function of 2-D space is generated according to the following formula: 

v 
Xo(i,j) = Xoo + YQQ *00 Z(*'-?)' (5-18) 

where xoo is a reference background value to be perturbed according to the template 

file, Z, which contains the inhomogeneous data measured and normalized to lie be- 

tween [—1, 1], and r is the contrast (percent) desired for the run. Only one half of 

the computational domain is filled with this inhomogeneous tissue-like medium. The 

other half is assumed to be homogeneous water containing the focused source. An 

example of an inhomogeneous data file used in these simulations in given in Figure 

5.2, showing a ±10% contrast in sound speed. The measured data were only given on 

a 32x128 grid due to the original sample size. For the purposes of the simulations, 

the measured data was extended over the entire tissue portion of the domain by tiling 

and reflecting it to fill a 256x256 grid region. This increased the apparent size of the 
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Figure 5.3: Acoustic pressure and temperature above background (37°C) at 16//s, 
24/us, and 32//s. The water half plane appears unheated due to the very low absorption 
coefficient in water compared to tissue. Each figure is scaled independently to take 
advantage of the full gray-scale color range. Axes labeled in cm. 

tissue sample, while minimizing any effects of repetition on the sound field, e.g. giving 

artificial discontinuities, which could cause reflections. Since the inhomogeneous data 

is symmetrical about the x=1.28 cm position to the left and to the right, the source 

was slightly offset to the left so that the left and the right portions of the beam do 

not pass through identical media. 
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Figure 5.4:  Acoustic pressure and temperature above background (37°C) at 16/us, 
24/is, and 32//s for the ±10% inhomogeneity contrast case. Axes labeled in cm. 

5.4-2   Results From the Inhomogeneous Medium Study 

The reference (no inhomogeneity, zero contrast) run was one having two half planes, 

each of which was homogeneous. The water half plane uses the following values for 

all the simulations in this study: 

c = 1500 m/s, 

p = 1000 kg/m3, 
(5.19) 

a = 2.88 x 10~4 Np/m, 

ß = 3.5. 
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The mean values for the tissue parameters, about which the inhomogeneous files were 

built were: 

c = 1600 m/s, 

p = 1100 kg/m3, 
H ' (5.20) 
a = 4.5 Np/m, 

ß = 5.5. 

These parameters are similar to those published in a number of sources over the last 

two decades [33, 34, 77]. Note the 4 orders of magnitude disparity in the absorption 

coefficient between water and tissue. For this reason, the temperature profile shows 

measurable temperature rise only in the tissue half plane, while the water half plane 

heating is negligible. 

Snapshots from the pressure and corresponding temperature calculations for the 

reference run are shown in Figure 5.3. Only the water-tissue interface interferes with 

the beam. The snapshots are taken at 16, 24, and 32 microseconds from launch at 

the source. Peak focusing occurred at about 24 p,s as the pulse reached the geometric 

focus. The thermal hot spot continues to heat up even after 24 fis because of the 

slow time to dissipate heat by conduction and perfusion. Upon introducing inhomo- 

geneities within the tissue, the acoustic focus is broken up and distorted at various 

scales. This is seen in Figure 5.4 along with its effect on the temperature distribution 

for the ±10% inhomogeneity contrast case. Increasing the inhomogeneity contrast to 

±20% results in the fields shown in Figure 5.5. Slices along the x and y axes are 

taken from the acoustic pressure fields for the contrast cases ±0%, ±10%, ±20% at 

24^ts and are shown in Figure 5.6. The acoustic field is scattered and distorted by 

the inhomogeneities in the case for nonzero contrast in the tissue. This can be seen 

in the reduced amplitude of the field at the geometric focus. Note that this reduction 

does not stem from increased absorption, but is due to the fact that the slices were 

taken through the geometric focus. In other slices in the plane it will appear that the 
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Figure 5.5: Acoustic pressure and temperature above background (37°C) at 16/is, 
24fj,s, and S2fis for the ±20% inhomogeneity contrast case. Note that the ±20% and 
the ±10% cases give qualitatively similar results, because the inhomogeneities are in 
the same locations. Axes labeled in cm. 

inhomogeneous case fields are stronger there. Reflection from the water-tissue inter- 

face can be seen at about x=2.75 cm. The reflections from all three slices coincide, 

as the travel path between the source to the interface through homogeneous water 

is the same. The temperature profiles along slices in x and y passing through the 

geometric focus are shown in Figure 5.7 at 32jus. Again, comparisons of the overall 

heating effect are difficult to make based on slices through any particular point, as 

the local effects of the inhomogeneity will affect the slice profiles. 
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Figure 5.6: Acoustic pressure slices along x and y through the geometric focus for the 
±0%, ±10%, and ±20% inhomogeneity contrast cases. 

The Overall Effect of Tissue Inhomogeneity 

It is difficult to gauge the effect of tissue inhomogeneity on the heating by taking 

single slices through the tissue. Instead, we perform a numerical integral in 2-D space 

over the tissue half-plane to determine the average heating that occurred in this region 

of interest. The formula used is 

E£r« (5.21) 

where the sum is taken over the computational domain. We find that Tsum is identical, 

independent of the amount of inhomogeneity contrast present. The reason for this is 
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Figure 5.7: Temperature elevation slices along x and y through the geometric focus 
for the ±0%, ±10%, and ±20% inhomogeneity contrast cases. 

that while the beam pattern is distorted in the region of interest for the inhomogeneous 

runs, the amount of absorption and the center frequency remain the same as for the 

reference case. Hence, the amount of acoustic energy deposited is the same. 

The localized field distortion in inhomogeneous tissue leads to local regions of 

elevated temperature which can lead to higher peak temperatures than for the zero 

contrast case. Small-scale diffraction and lensing effects are more pronounced for the 

runs with higher inhomogeneity contrast. Figure 5.8 shows the peak temperature 

found in the tissue for each of the inhomogeneity contrast runs for the same initial 

conditions at the source. It is noted that a monotonic trend to higher peak local 

temperatures is obtained as inhomogeneity contrast increases.  This can have rami- 
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Figure 5.8: Peak local temperature rise found in the tissue for various inhomogeneity 
contrast cases, showing a general trend to higher peak local temperatures for higher 

inhomogeneity contrast. 

fications to dose and safety studies, where the maximum pressure and temperature 

may be of concern. Real soft tissues can be expected to exhibit about ±10% inhomo- 

geneity contrast in the values of their background propagation parameters at constant 

temperature, depending on the organ [43]. 

5.4-3   Severe Inhomogeneity Effects 

Next we look briefly at an example where a severe mismatch in properties between 

the tissue and some inclusion in the tissue exists.   This may occur if a cavitation 
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cloud, a gas pocket, or a bone cross section are in the path of the propagation. In our 

example we assume the properties within the inclusion are homogeneous, and have 

the values 

P (16.0 (is) p (24.0 us) P (32.0 (is) 

T(16.0|is) T (24.0 |ts) T (32.0 (is) 

Figure 5.9: Pressure and temperature elevation for the case where a severely mis- 
matched cavity inhomogeneity lies in the tissue in the vicinity of the beam. Axes 
labeled in cm. 

c = 250 m/s, 

p = 500 kg/m3, 

a = 1 Np/m, 

|9 = 10. 

(5.22) 
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These values attempt to represent parameters which might be found in a region 

containing cavitation bubbles. No details of the properties of such an inclusion are 

available at the time of writing, but it can be expected that both the sound speed 

and the density of the effective medium are lower than that of the tissue, and that 

the nonlinearity coefficient would be significantly higher than that of the tissue [42]. 

Figure 5.9 shows simulation output from an example with strong scattering. The 

severe pc mismatch displaces the pulse to the left (24yus), and leaves a distorted hot 

spot (32|Us). The tissue inhomogeneity contrast for this run was ±10%. Output such 

as this suggests that focused ultrasound surgery is most accurate in soft tissue with 

minimum obstructions. Any significantly mismatched inclusion will move a typical 

size therapeutic beam off course by an amount comparable to the size of the inclusion. 

Further, treatment of tissue in the inclusion's shadow is precluded if the mismatch 

leads to strong scattering of the sound. 

5.5    CW Heating in Quiescent Tissue 

We now consider tissue heating due to continuous wave (CW) insonation. The in- 

sonations presented in the following sections will have longer durations than the single 

pulses seen earlier. For insonations of several seconds duration we can expect real tis- 

sue to experience physical changes in its material properties. These time-varying 

background (TVB) changes will be discussed in the next section, but for now we limit 

our study to quiescent, or unchanging tissue. For these simulations we use the same 

acoustic and thermal algorithms developed earlier in this chapter, but we allow the 

source to be active for a longer duration (100 ^s) so that the entire computational 

domain can be filled with sound and reach a time-harmonic steady state. Figure 5.10 

shows snapshots of the pressure and temperature for a 100 [is pulse, which is long 

enough for the acoustic pressure field to reach a time-harmonic steady state, as prop- 

agation across the computational domain requires only 30 fis.  Absorbing boundary 
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conditions on all outer edges of the computational domain act to minimize reflected 

sound waves into the interior of the domain. Since all the remaining calculations 

require knowledge of the acoustic pressure field only in addition to the tissue prop- 

erties, we can use the results from the long pulse simulation to infer the behavior 

of the pressure and temperature fields for any time period desired. This assumption 

that the pressure field will look the same from one acoustic cycle to the next is what 

we call continuous wave (CW) behavior in a quiescent medium. To confirm that the 

P(25|i.) p(50|i!) p(75|is) P (too no 

T(25(ls) T(S0ni) T (75 |ii) 

-2 0 2 2 0 2 

T (100|ls) 

-2 0 2 

Figure 5.10: Pressure and temperature snapshots for a pulse which is long enough 
so that the acoustic field reaches steady state on the computational domain. Axes 
labeled in cm. 

pulse was long enough to attain time-harmonic steady state acoustics we plot an axial 

slice through the pressure field at 50, 75, and 100 /J,S in Figure 5.11. The pressure 

field slices are congruent at these times, indicating that the snapshots were taken at 

integral multiples of a period and are at steady state. Figure 5.11 also shows tem- 

perature along the transducer axis rising with insonation time, achieving a value of 1 
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Figure 5.11: Pressure and temperature slices along the transducer axis taken at 50, 
75, and 100 /xs. Pressure is at steady state, while temperature continues to rise with 

insonation time. 

mK above background after 100 fis. The linear rate of temperature rise is consistent 

with the steady state conditions. 

Typically the FDTD time step size for acoustic calculations at 1 MHz is on the or- 

der of 10 nanoseconds. Thus it is not practical to obtain results for a 10 s insonation 

by running the basic acousto-thermal code until 10 s are reached (this would re- 

quire approximately two years of execution time using current computers!). Since the 

thermal problem occurs on a much slower time scale, it is not necessary to continue 

acoustic field calculations once a time-harmonic steady state is achieved. Coarser time 

gridding is used to advance the calculations of the temperature field. To obtain the 



95 

temperature for insonations much longer than the acoustic simulation would permit, 

we integrate the heat deposited from the CW acoustic field over one period, then we 

assume that this heat deposition pattern remains unchanged (this assumption will be 

relaxed later) for the remainder of the insonation. The temperature field is calculated 

using the bioheat equation in a separate FDTD program using a much larger time 

step (about 10 /is) which can proceed to calculate results for insonations of several 

seconds in about 10 minutes of execution time using current machines. Thus knowl- 

edge of the CW pressure field allows extrapolation to calculate the heating for much 

longer times, on the order of several seconds for therapeutic applications. 

The method for calculating the CW heat deposition term consists of integrating 

the heat deposition field in time for one acoustic cycle having period r0, after steady 

state is reached, 

<3 (x)acoustic cycle =   / Q(x,t) dt, (5.23) 
Jt0 

where t0 is great enough to achieve a time-harmonic steady state acoustic field on the 

computational domain. Subsequent FDTD calculations of the bioheat equation can 

then use a larger time step than that used in the pressure calculations, and the rate 

of heat deposition used in the bioheat calculations Q(x)bioheat has the same spatial 

distribution, but has magnitude 

r 
v(x)bioheat = v(x)acoustic cycle ? [0.2,4) 

where £tbioheat is the timestep used for the bioheat equation solver. 

The 10 s time trace of the temperature at the geometric focus of the source is 

shown in Figure 5.12, where the insonation lasted for 5 s followed by a cooling time 

of 5 s. The simulation assumes tissue parameters for soft tissue as listed in equation 

(5.20). The spherical section bowl transducer emits a 1 MHz field at 1 MPa source 

pressure. The aperture of the bowl is 4 cm and the radius of curvature is 3 cm. 

At this point it is appropriate to examine the bioheat equation (5.1) again for 



96 

38.4 

38.2 

38 

37.8 
U 

37.6 

37.4 

37.2 

37 

L               1                 1 i 

Source turned off 

I i          i i 

0        0.1       0.2       0.3       0.4       0.5       0.6       0.7       0.8       0.9 1 
time(s) 

Figure 5.12: Temperature at the geometric focus due to a 10-second simulation for 
a 1 MHz bowl source at 1 MPa in soft tissue. The source was ON for 5 seconds, 
followed by 5 seconds with the source OFF. 

insight into the individual terms. We rewrite the bioheat equation here for convenience 

K,, tiss dT 

dt      pCt\ss 

V2T 
WbCb (T-Ta) + Q bioheat (5.25) 
pCtiss pCtiss 

A number of effects are represented in (5.25). The driving source for the heating 

of the tissue is Q which is a function of space only for steady heating in quiescent 

media. The other terms (from left to right) represent temperature rise, conduction 

due to the spatial gradient of temperature, and perfusion due to the elevation in 

temperature above the ambient temperature, Ta = 37°C. Figure 5.13 shows results 

from a 1-second simulation using the same bowl source described in the previous 

paragraph. The source is on for 0.5 seconds and turned off for the remaining 0.5 

seconds.   The figure plots the temperature at the location of the transducer focus 
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Figure 5.13: The time trace of temperature at the focus for a 0.5 s on then 0.5 s 
off insonation. The traces show the effect of conduction iftiss and perfusion W\> on 
temperature. 

1. üftiss = Wb = 0: In this case no conduction or perfusion are simulated, and 

the only effect is due to heating by the source Q. The bioheat equation is thus 

reduced to the linear relation 

»'IC? (5-26) 

We see for this case that the temperature rise is linear, with a slope of Q/(pCtiss), 

and that no cooling occurs after the source is extinguished. In other words, if 

integrated once over time r 

T(T) = Ta + 
_Q_ 

pCti, 
(5.27) 

tiss 
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Figure 5.14: Temperature difference between the focal temperature with and without 
considering perfusion. An inflection point in the curve at 0.5 s indicates where (T—Ta) 
stops increasing and starts decreasing. 

2. Ktiss > 0, Wb = 0: If conduction is taken into account, but not perfusion, we 

see a nonlinear profile to the temperature of the hot spot in Figure 5.13. The 

conduction term acts to remove some of the heat from the immediate vicinity 

of the focus during and after the insonation. Ktiss used was 0.6W/(m • K). 

3. Kt\ss > 0,Wb > 0: For the case where both conduction and perfusion are 

taken into account, we see a curve almost identical to that for the i^tiss > 

0, W^ = 0 case.   However, to look at whether the perfusion has any effect on 
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the temperature profile we plotted the difference between the focal temperature 

with and without perfusion. The result is shown in Figure 5.14 and shows that 

indeed there is a small effect attributable to perfusion. Figure 5.14 indicates 

that the perfusion effect becomes increasingly important as the temperature 

rises above ambient temperature, because the perfusion term contains the factor 

(T — Ta). Wb results from heat exchange from the heated tissue to the ambient 

blood flow network, assumed uniform in the tissue. The value used for Wb was 

0.5kg/(m3 -s). 

5.6     Therapeutic Ultrasound in Nonlinear Time-Varying Tissue:   CW 

Simulations 

A model for propagation of finite amplitude ultrasonic waves in nonlinear, absorbing, 

time-varying background (TVB) media was presented in Chapter 2. Numerical sim- 

ulations using the FDTD method are used to investigate the thermal and acoustic 

effects from focused transducers in media with TVB sound speed and attenuation 

coefficient. 

The motivation for these simulations is the experimental data showing the temperature- 

dependence of c0 and a0 [4, 17].   The data measured by Bamber and Hill and by 

Damianou, et al. are adapted for the present study by using one data point per 5°C 

between 30°C and 90°C. The results are shown in Figure 5.15 along with polynomial 

fits to the data. The polynomial used to fit the sound speed to the data is 

c(T) = 1466 + 8.43T - 0.167T2 + 1.27 x 10"3T3 - 3.33 x 1(T6T4 m/s.      (5.28) 

The polynomial used to fit the absorption coefficient to the data is 

■\-3n-i2       o on w in-5a->3 a(T) = -43.8 + 6.24T - 0.303T + 7.06 x 10~6T2 - 8.39 x KT5Td 

+ 4.91 x 10"7r4 - 1.12 x 1(T9T5  Np/m. 
(5.29) 
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Figure 5.15: Temperature dependence of sound speed and absorption coefficient in 
soft tissue taken from published laboratory measurements (symbols) and the corre- 
sponding polynomial fits to the data (solid). 

Caution should be exercised not to extrapolate the polynomials outside the region 

of fitting, as they only model the data inside the interpolation regions, here 30°C to 

90° C. 

These data imply that during the course of a single focused ultrasound treatment 

tissue properties will change and quite significantly for the absorption coefficient a0 if 

temperature exceeds 60°C. Data for other properties such as nonlinearity coefficient 

and density are not available. The temperature-dependence of a0 implies the rate of 
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heat deposition will also be temperature (and time) dependent, since the heating rate 

is directly proportional to the absorption coefficient. 

To estimate the importance of the TVB behavior on the acoustic waves, we used 

order of magnitude estimates in section 2.5.2 to obtain the relative magnitudes of 

the TVB terms in the TVB wave equation (2.56) compared to the other terms in 

the wave equation. For tissue insonated by a 1 MHz bowl source of 2 cm aperture, 

having a source pressure of 1 MPa, we concluded that for the range of parameters 

of interest, the time variation in the tissue background properties is not important 

at the acoustic time scales. In other words, we formally demonstrated that the slow 

TVB effects (temperature dependence with time scales of 1 s) are too slow to affect 

the acoustic waves having time scales on the order of 1 fis. 

One may be inclined to conclude that the previous paragraph implies that the 

TVB is not a factor in acoustic applications of ultrasound. This is however untrue, 

since a typical treatment does occur over a span of several seconds at the least, to 

achieve a useful temperature rise. Thus the variation in the background acoustic 

properties of the tissue should be taken into consideration for insonations with dura- 

tions comparable to the thermal time scales. In this chapter we will show the results 

of simulations which couple the acoustic and the thermal behavior of tissue to see 

what the effect on overall heating is. 

5.6.1    An Example of TVB Behavior 

Now we look at one case where the background sound speed and attenuation coef- 

ficient are allowed to vary in time according to the temperature of the tissue as a 

function of space and time. In this case the sound field can be expected to change 

with both the thermal time scale as well as the acoustic time scale. Specifically, as 

temperature increases in the focal region, we can expect the rate of temperature rise 

to increase because the driving term in the bioheat equation is dependent on a, which 

is monotonically increasing with temperature. In fact, a doubling of the attenuation 
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coefficient appears to be possible over the period of a hyperthermia treatment of sev- 

eral seconds duration. This is because the temperature range up to 70° C and higher 

is possible with an insonation of a few seconds from a typical laboratory hyperthermia 

focused source. 

Inputs:^ %, Ax, At, etc. 
l'DTD Acoustic Pressure 

Solver 

Polynomial Fit TVB 
to Measurements 

a 

H)TI) Bioheat Kc|ualion 
SOI\LT 

, , 

Inputs: Ta, Wb, Kt, Ct, C» etc. 

Figure 5.16:  Flowchart showing the iterative method for coupling the pressure and 
temperature calculations in the TVB simulations. 

The flowchart in Figure 5.16 shows how the acoustic and the thermal solvers were 

coupled for the TVB computations via the CW heating term Q as before. Periodically 

(at 1 s intervals) the thermal solver is made to output updated background properties 

of the tissue to data files. The sound speed and attenuation coefficient are updated 

using the polynomial fitting routine derived from the laboratory measurements of the 

temperature-dependence of c and a. The updated c and a are then used as inputs 

to the acoustic solver to calculate a new pressure field, and a new Q field, and so on 

in an iterative fashion.  Thus the pressure field, which drives the heating, is in turn 
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Figure 5.17:   Temperature profiles across the axis in the focal plane at 3, 4, 5 s, 
showing increased heating in the TVB case. 

affected by the temperature field. The temperature's effect on a can be particularly 

important in hyperthermia applications. 

In Figure 5.17 we show slices across the axis of a bowl transducer as they evolve 

in time for quiescent and TVB simulations. Note that at 3 s the TVB case results 

are close to the quiescent results, or even a little lower in temperature. The reason 

is that at 3 s the temperature is about 55° C, and at this temperature the absorption 

coefficient has dropped slightly compared to that at 37° C. As the insonation time 

increases, the temperature exceeds 60°C, where there is a dramatic increase in a. 

In this case the temperature from the TVB simulation is higher than that from the 

quiescent simulation.   This result can be explained if we look at the profile of the 
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Figure 5.18: Slices of Q taken across the axis at the focal zone at 1 s and 5 s for the 
TVB case. A dramatic increase in the heat deposition rate Q can be observed if the 
attenuation coefficient (directly proportional to Q) is included in the simulation. Q 

would be steady for quiescent simulations. 

driving source term Q in the bioheat equation as it evolves in the TVB case. Figure 

5.18 shows the Q profile across the transducer axis in the focal plane at 1 s and 5 

s. Q increases due to the increase in a with temperature. The direct proportionality 

between a and Q is responsible for the added heating noted at the focus. 

5.7    Conclusions 

This chapter explored several facets of focused ultrasound surgery in soft tissues using 

modeling and numerical simulations. The techniques developed in earlier chapters for 
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modeling acoustic sources and fields was coupled to the bioheat equation through the 

acoustic energy deposition driving term in the bioheat equation. Various effects were 

studied including the effect of finite-amplitude propagation, inhomogeneity contrast, 

and slow TVB variation in temperature-dependent tissue. 

We showed that finite-amplitude propagation leads to enhanced heating. Be- 

cause absorption in lossy media is monotonic with frequency, a waveform containing 

higher-frequency harmonics is absorbed more readily than one containing only the 

lower-frequency fundamental. This result is not new, but was confirmed here for 

focused sources in tissue-like media using the FDTD simulations. The amount of 

excess heating in finite-amplitude situations over linear ones depends on the same 

factors governing the generation of harmonics: propagation distance to target, source 

frequency and amplitude, and nonlinearity coefficient of the tissue. For the example 

used in this study, the nonlinear temperature elevation was about up to 1.8 times 

that of the linear case for similar insonations from a short pulse. 

Inhomogeneity contrast about- a mean value was studied because of its effect on 

the profile of the acoustic beam and the resulting distortion of the hot spot near the 

focus. The present study used a tissue inhomogeneity model derived from laboratory 

measurements using human tissue samples [43]. It was found that while increasing the 

percent inhomogeneity contrast does not affect the overall thermal energy deposition 

in the extended tissue sample (a statement of conservation of energy). However, the 

peak temperatures in the computational domain increased monotonically with percent 

inhomogeneity contrast. We hypothesize that the cause for this is local lensing of the 

acoustic field, and accompanying local heating due to the inhomogeneity result when 

small-scale inhomogeneities are inserted in the propagation path. The peak local 

temperature excursions can have implications for safety studies of FUS devices. Severe 

inhomogeneities, such as obstruction by bone, vasculature, bladders, or bubble clouds 

can have dramatic effects on the acoustic and temperature fields due to reflections 

and scattering from the obstruction. 
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Finally, when the effect of temperature-dependence on tissue sound speed and 

attenuation coefficients was taken into account (TVB simulations), increased heat- 

ing near the focus was observed. It has been observed in the laboratory that the 

attenuation coefficient of soft tissue is approximately monotonically dependent on 

temperature [17] between 30°C and 90°C, with the absorption coefficient nearly dou- 

bling between 50° C and 70° C. This effect will cause an increase in the rate of heating 

in the regions near the focus of a FUS device. The present study shows that since the 

heating rate is directly proportional to the absorption coefficient, slow TVB effects 

need to be accounted for in modeling and simulating FUS treatments. 
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Chapter 6 

CONCLUSIONS 

This dissertation addressed issues associated with forming a high-amplitude focus 

using arrays and extended focused sources in various propagation media. Specifically, 

we addressed the problems which may face time reversal focusing in the presence of 

debilitating effects such as phase jitter, absorption, and nonlinearity. Further, the 

behavior of focused sources used for tissue heating in biomedical applications was 

examined in the presence of nonlinearity, inhomogeneity, and time-varying medium 

properties. These studies were conducted under the umbrella of finite-amplitude 

acoustic models and associated numerical simulation codes. 

The practical applications of acoustics and ultrasonics in medical, industrial and 

military uses are almost completely restricted to two classes of applications: 

1. Nondestructive diagnostic and imaging applications. Diagnostic medical imag- 

ing with ultrasound, nondestructive testing of materials (NDT), and communi- 

cations and surveillance are examples of this use. 

2. Applications requiring focused, high-intensity sound for the purpose of affecting 

physical change to the objects insonated near the focal spot. Examples are fo- 

cused ultrasonic surgery, ultrasonic welding of plastics, and mine neutralization. 

This dissertation deals with the latter use for acoustic arrays and focused sources 

in underwater and biomedical applications. Several topics in linear and nonlinear 

acoustic focusing were studied, with emphasis on the evaluation of the focusing char- 

acteristics of time reversal arrays (TRA's) and therapeutic hyperthermia sources for 

focused ultrasound surgery (FUS). 
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Two recently-proposed applications for acoustic arrays and focused sources are 

high-intensity time reversal arrays and focused hyperthermia applicators. The un- 

derlying concepts for the operation of these devices are reasonably well understood. 

However, both of these technologies in their current forms are relatively recent addi- 

tions to the arsenal of underwater and biomedical engineers, and until now they have 

not become commercially viable. We now examine the background and the contri- 

butions of this dissertation to each of the main problems addressed in this study, as 

well as future directions for the use of TRA's and FUS sources. 

6.1     Time Reversal Arrays 

6.1.1    Motivation for the TRA Study 

The advent of digital data aquisition and computer-controlled transducer arrays al- 

lowed scientists to realize the acoustic phase conjugate mirror, or time reversal array. 

The device allows for automatic phase correction at the array to produce a focus 

at the location of a scatterer in an unknown inhomogeneous medium containing ar- 

bitrary multipath and multiple scattering. The technique relies on the stationary 

medium providing a matched filter for the propagation of acoustic waves from and 

to an illuminated scatterer, even if the nature of the propagation path is not known. 

The technique is superior to conventional time-of-flight initial delay focusing because 

it captures the initial delay information as well as detailed waveform distortion in- 

formation from all propagation paths, and corrects for both using the medium as a 

spatial-temporal filter. The technique was hailed as a true advance in imaging and 

focusing applications because it permitted the phase correction due to unknown ex- 

tended inhomogeneities rather than just a thin phase aberrating layer near the array. 

One intriguing aspect of time reversal array technology is the promise of devices that 

can direct intense acoustic energy onto one or more scattering targets. The idea is to 

deposit sufficiently intense fields onto the targets to cause permanent physical change 
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or destruction. This idea could be useful for accurate targeting and destruction of 

kidney stones, or for remote mine neutralization at sea. 

Currently, the most successful means for removal of kidney stones involves imaging 

with X-rays, then placing the patient and the stone in a coupling water bath at the 

focus of a lithotripter source. The lithotripter machine then fires hundreds of shots 

(focused shock waves) at the stone. While lithotripsy is effective and is in wide use, 

several problems plague lithotripters and reduce their effectiveness. The targeting 

requires the use of X-ray radiation to locate the stones. In addition, the targeting 

assumes that the propagation path is a homogeneous medium, and thus both the 

position of the focus and the shape of the beam will suffer from variations in the 

index of refraction resulting from the propagation through the human body and the 

body-water interface. Finally, the stone is assumed to remain stationary for the 

duration of the treatment, or for a portion of the treatment between repositioning. It 

is thought that a large percentage of shots fired at a kidney stone miss their intended 

target due to breathing motion and other targeting errors [67]. 

Using time reversal arrays has been suggested as a means of targeting kidney 

stones that can correct for the unknown refractive index variations in the patient's 

body. Iterative use of the time reversal method can track moving scatterers and 

maintain the focus of the array on a kidney stone in a breathing patient. The next 

step in the process involves amplifying the array outputs to send high-amplitude 

pulses, or shock waves, toward the kidney stone for the destruction phase. This is 

repeated, always targeting the brightest scatterer until the procedure is complete. 

The concept has been successfully demonstrated in the laboratory for low amplitudes 

[67]. A similar technique was proposed for the remote neutralization of mines in a 

shallow water channel, and the proposed solution was similar to that intended to 

destroy kidney stones. 

Ideally, time reversal systems will operate very effectively to focus onto their tar- 

gets according to theory.  However, in real applications we will encounter problems 
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that will degrade the effectiveness of the TRA's as focusing implements. These factors 

that compromise a time reversal system's performance are called debilitating factors 

in this dissertation. Several debilitating factors are considered in this study. These 

include imperfect initial phasing of the TRA, absorption, and nonlinear propagation. 

The arrival times for different propagation paths in a time reversal channel can 

be adversely affected if jitter exists in the recorded or the retransmitted signals from 

the array elements. This study looks at the quantitative effect of this jitter as a 

debilitating factor. 

Absorption in the propagation medium will degrade the performance of time re- 

versal focusing systems. This is because the absorption term in the wave equation 

contains odd-order time derivatives, which are not invariant under time reversal. This 

has unfortunate implications for high-intensity time reversal systems, and thus absorp- 

tion is studied as a debilitating factor. This is especially important for high-amplitude 

applications. 

In order for high-amplitude time reversal systems to be realized, we must re- 

examine the assumptions and the mathematics of the phase-conjugate arrays with 

finite-amplitude acoustics taken into consideration. As source amplitude and propa- 

gation distance increase, energy is transfered from the lower frequency fundamental 

into higher frequency harmonics due to nonlinearity. In fluids the energy loss is invari- 

ably higher for higher frequencies. The result is an overall loss of focal spot pressure 

amplitude when finite-amplitude time reversal is used in lossy media. For applica- 

tions requiring high acoustic pressures at the focus like those described above, this 

means that a finite-amplitude time reversal system will not be as efficient as a lin- 

ear one. This dissertation explores this degradation in a quantitative way, and uses 

simulations to provide evidence of the extent of the degradation as a result of the 

debilitating factor: finite-amplitude propagation. 

In order to get an idea of how well we may expect real time reversal systems to 

perform for underwater and biomedical applications, this dissertation examined the 
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operation of time reversal arrays under nonideal conditions, i.e. in the presence of 

the debilitating effects above. 

6.1.2    Contributions Made to the TRA Problem 

Errors in the initial phasing of time reversed signals can occur if the electronics of the 

time reversal system (aquisition, storage, signal processing) are of poor resolution. 

Depending on the frequency and bandwidth of the signals, errors in phasing at the 

array can result in loss of focusing by a TRA. Jitter in the retransmitted phases of the 

time reversed signals was found to be tolerable up to about one-eighth to one-sixth of 

a fundamental period, beyond which a loss of focus occurs [41]. This is corroborated 

by studies of time-delay phased arrays by other researchers [70, 62], but the present 

study looked explicitly at the effect of jitter in time reversal applications. 

Absorption in the propagation medium is a serious factor in degrading the ability 

of TRA's to place an intense focus at the desired target location. This is only par- 

tially due to the loss of acoustic energy in the linear absorption in the thermoviscous 

medium. What makes absorption a debilitating factor for TRA's is the fact that the 

absorption term in the wave equation causes a violation of time reversal invariance. 

The wave equation will no longer have twin solutions (forward time and backward 

time solutions). As a result, the overall ability of a TRA to form a sharp intense focus 

is reduced. This has been known to be the case in absorbing media, but this study 

presented formal analysis of the wave equation for thermoviscous fluids showing the 

cause for the time reversal invariance violation, along with examples of this effect in 

simulations of TRA's for biomedical applications. 

While absorption is found to be a debilitating factor for time reversal arrays. This 

study used propagation through a model section of the human skull and brain as a 

tool to examine the effects of absorption in the skull bone layer on a TRA placed in 

water outside the subject's head. It was found that for the pulse used in this study a 

marked reduction in focal amplitude and an increase in full-width-at-half-maximum 
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occurred. 

The operation of a time reversal array was re-examined using the nonlinear ab- 

sorbing wave equation as a model for wave propagation. It was shown that the non- 

linearity in itself is not responsible for degrading the performance of TRA systems. 

Only when combined with absorption in the medium or amplification at the array 

were finite-amplitude TRA systems adversely affected. It was shown analytically 

that the extra absorption loss due to high frequency content of shocked waveforms 

in nonlinear TRA's can have a very detrimental effect on the efficiency of a focusing 

system using TRA's. A source-target separation of more than one to two shock for- 

mation distances was found to lead to a reduction of the peak pressure amplitude at 

a TRA focus to a fraction of that expected from linear propagation alone in a similar 

linear medium. Furthermore, if the amplitude of the received signal was altered at the 

array (amplified for example) nonlinear TRA's would suffer a performance penalty 

because the exact replication of the received waveform (time-reversed) is a condition 

for perfect phase conjugation. This amplification at the array, which is commonly 

assumed for proposed applications in underwater and biomedical applications, is a 

violation of time reversal invariance and is a debilitating effect. 

6.2    Therapeutic Ultrasound: Focused Ultrasound Surgery 

6.2.1    Motivation for the FUS Study 

The use of focused ultrasound sources to deposit thermal energy for therapeutic 

biomedical applications (hyperthermia) was also investigated in this dissertation. 

Much promise for treatment of deep-seated tumors has been evidenced by in vitro 

and in vivo experiments in the last decade using focused transducers operating in the 

megahertz frequency range [47, 65, 63]. The absorbing tissue acts to convert acoustic 

energy to thermal energy, inducing a temperature rise. The temperature rise near 

the focus can kill living cells via necrosis by exceeding the thermal dose threshold 
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associated with cell death. While the basic operation of hyperthermia devices is un- 

derstood, and models exist to predict the behavior of the acoustic and thermal fields 

of such devices, some aspects of high-intensity focused surgery systems still require 

further study in order to be made into viable medical systems. This dissertation 

examines the behavior of focused ultrasonic surgery systems through numerical simu- 

lations and modeling. Key aspects of ultrasound focused surgery such as the heating 

from finite-amplitude sources, the heating in inhomogeneous tissue-like media, and 

the heating of time-varying tissue were studied. 

It is known that increased tissue heating will occur from high-amplitude focused 

sources due to the higher harmonic content of the acoustic field near the focus. The 

higher frequency content in shocked waveforms deposit more energy in the absorbing 

tissue because of the frequency dependence of the absorption term in the wave equa- 

tion. Predictions of heating based only on linear field calculations in homogeneous 

media are common in hyperthermia research, and a good balance between clinical util- 

ity and well-founded theoretical physical acoustics is required for the next-generation 

simulations of hyperthermia systems. 

One aspect of propagation in real tissues that plays an important role in hyper- 

thermia is the presence of inhomogeneities in the background properties of soft tissue 

and other organs in the body. Spatial variation in the propagation medium properties 

alter the exact shape and location of the acoustic and thermal hot spots. Most cur- 

rent hyperthermia research is conducted under controlled conditions using soft tissue 

where the effects of propagation uncertainties are minimized. Realtime measurement 

of such inhomogeneities for case-specific correction would require sophisticated imag- 

ing techniques in order to faithfully capture the nature of the inhomogeneity, as well 

as powerful computational abilities. This is especially important if passing acoustic 

beams through regions of high inhomogeneity contrast, or severe inhomogeneities such 

as bone, vasculature, bladders, or gas pockets, in which case the passage of sound may 

be obstructed outright and scattered to unexpected locations. 
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Another important feature of tissues is the way that they respond to heating. 

Perfusion, the adaptive cooling of bulk tissue by blood flow, is temperature depen- 

dent, and makes for a challenging control problem. More important is the behavior 

of temperature-dependent background propagation properties. The sound speed and 

absorption coefficient have been measured to be a function of temperature, so the 

position and shape of the focus will vary in time as the tissue is heated. For accurate 

simulations of bioacoustics problems, other acoustic and thermal properties' charac- 

teristics should be measured to be included in the calculations. At this time most 

properties have only been reported for body temperature conditions. 

6.2.2    Contributions Mode to the FUS Problem 

Simulations of the spatial and temporal evolution of the pressure and temperature 

fields from hyperthermia sources were presented. The calculated pressure field was 

then used to determine the local heating due to absorption. This heating was used 

as a source term in solutions of the transient bioheat equation. Simulations for finite- 

amplitude FUS sources were performed, and the results compared to similar sources 

in a linear medium. Enhanced heating depended on the source pressure, amplitude, 

frequency, and geometry, as the generation of harmonics depends on these factors. In 

simulations performed for this research the heating could be increased by a factor of 

1.5 to 3 in comparison to predictions by linear models. 

We demonstrated that inhomogeneities in the propagation medium's background 

parameters lead to local distortion of the acoustic beam, and a resulting distortion 

of the heating pattern calculated for the homogeneous (zero contrast) case. The sim- 

ulations used spatial distribution data for real human tissue properties found in the 

literature. This study found that the overall heat deposited by a beam in an inho- 

mogeneous medium with zero-mean-plus-average inhomogeneities is the same for any 

amount of inhomogeneity contrast. This is a statement of conservation of energy, since 

the acoustic energy loss to heat will be the same, but merely redistributed in space. 



115 

The peak temperatures observed however monotonically increased with inhomogene- 

ity contrast. That is to say, as inhomogeneity contrast was increased, higher and 

higher values of peak local temperature were observed in the computational domain. 

Given the previously-mentioned conservation statement, this implies that other loca- 

tions underwent less heating. This finding has implications for safety studies, where 

the peak temperature excursions are of concern, as well as for applications where rais- 

ing the temperature sufficiently to ensure complete necrosis is required at all locations 

in the region of interest. 

Finally, the coupling of pressure and temperature calculations was carried out with 

a slow-scale TVB tissue simulation. The tissue was assumed to change its background 

sound speed and attenuation coefficients in accordance with published measurements 

for these quantities. A polynomial fit to the reported data was used to periodically 

update the initial condition data files containing the sound speed and the attenua- 

tion. This new data was then fed into the pressure solver program to compute an 

updated acoustic field. This interdependence of heating on acoustic pressure and 

acoustic pressure on temperature formed a feedback loop that dramatically altered 

the temperature predictions for a hyperthermia system. The fact that the attenuation 

coefficient had a monotonically increasing dependence on temperature, and the fact 

that heating rate is directly proportional to absorption coefficient implies an accel- 

eration in the rate of temperature rise for a system with slow TVB feedback. The 

absorption coefficient can double over the span of a hyperthermia treatment session, 

thus doubling the heating rate for the same acoustic field. Results confirmed that as 

temperature increased near the hot spot, the disparity between the cases where TVB 

was and was not taken into account grew in magnitude. 
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6.3 Other Contributions 

This dissertation has made original contributions to the study of finite-amplitude 

propagation in inhomogeneous thermoviscous time-varying background (TVB) media. 

Starting from the equations of fluid mechanics, the nonlinear absorbing wave equation 

in inhomogeneous thermoviscous fluids was derived for the case having time-varying 

background (TVB) parameters. This wave equation was studied in depth and nondi- 

mensionalized to elucidate the significance of the TVB, and the regimes of operation 

which would require consideration of the TVB wave equation. 

Simulations were carried out using original computer codes capable of representing 

the physics appearing in the wave equation. Finite-difference time-domain (FDTD) 

simulations allowed detailed study of the spatial and temporal behavior of the sys- 

tems under consideration, and were especially helpful in capturing the essence of the 

behavior of the focal zone. 

6.4 Summary 

Despite having a good foundation for understanding the workings of time reversal 

systems and acoustic hyperthermia processes, this research reports on some important 

new findings. In the case of time reversal arrays, nonlinear effects were shown to have 

a serious debilitating effect on the ability of a TRA to form an intense focus at the 

desired location. Absorption and amplification of the time reversed signal at the 

array were shown through analysis and simulation to be detrimental to the TRA 

performance. Jitter in the time reversed signal was also shown to gradually erode the 

sharpness of the focus of a TRA system in an underwater channel. Future research 

involving laboratory measurements for finite-amplitude time reversal systems would 

complement these findings, and given the limitations of the numerical tools available, 

perhaps the measurements could extend the results to higher Gol'berg numbers and 

for greater distances than those simulated in this study. The simplest form of a TRA, 
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a one-dimensional two-element case, was used for this study. It would be informative 

to use real multi-dimensional arrays in a laboratory study. Time reversal lithotripsy 

systems should be investigated in the laboratory under finite-amplitude conditions 

to evaluate their performance. Time reversal mine-hunting systems appear to be 

unlikely to yield a real device capable of destroying today's mines. This is not due 

to a deficiency in the targeting or location of the mines, but due to the enormous 

acoustic pressures that would be required to cause mine neutralization. Such high 

pressures are currently unobtainable using time reversal arrays. 

For hyperthermia, an original numerical simulation tool was designed and used to 

study the effects of nonlinearity, inhomogeneity, and time-varying background cou- 

pling between the acoustic and the thermal fields. The temperature of the hot spot 

was found to be enhanced by nonlinear generation of higher-frequency harmonics as 

expected from results found in modern literature on the subject. Effects of tissue 

inhomogeneity were studied, where an overall conservation of thermal deposition of 

energy was observed, but an increase in the peak local temperature was observed for 

the inhomogeneous media. Finally, a coupling of the acoustic and thermal response 

of tissue was taken into consideration. A feedback relation between acoustic and 

temperature fields was obtained, with a resulting increase in the absorption coeffi- 

cient and temperature. A lack of measured data for tissue properties as a function 

of temperature was encountered. This study used the available data for sound speed 

and absorption coefficient, but measurements of the temperature-dependence of the 

other acoustic and thermal properties of tissue would be very helpful to future mod- 

elers, and could perhaps be combined with simulation tools to provide realtime FUS 

treatment planning on a case-specific basis. 



118 

BIBLIOGRAPHY 

[1] A. L. Anderson and L. D. Hampton. Acoustics of gas-bearing sediments i: Back- 

ground. J. Acoust. Soc. Am., 67:1890-1903, 1980. 

[2] M. A. Averkiou, L. A. Crum, V. A. Khokhlova, and 0. V. Rudenko. Nonlinear 

waveform distortion and energy attenuation of intense acoustic waves in biolog- 

ical tissue, in Proceedings of the World Congress of Ultrasonics, Part I. Berlin, 

Germany, 1995. 

[3] D. R. Bacon and E. L. Carstensen. Increased heating by diagnostic ultrasound 

due to nonlinear propagation. J. Acoust. Soc. Am., 88(l):26-34, 1990. 

[4] J. C. Bamber and C. R. Hill. Ultrasonic attenuation and propagation speed in 

mammalian tissues as a function of temperature. Ultrasound in Med. and Bioi, 

5:149-157, 1979. 

[5] L. M. Berkhovskikh and Y. P. Lysanov. Fundamentals of Oc Acoustics, Second 

Edition. Springer-Verlag, 1991. 

[6] R. T. Beyer (ed.). Nonlinear Acoustics. Naval Sea Systems Command, Wash- 

ington, D.C., 1974. 

[7] D. T. Blackstock. Thermoviscous attenuation of plane, periodic, finite-amplitude 

sound waves. J. Acoust. Soc. Am., 36:534-542, 1964. 

[8] J. L. Buchanan and R R. Turner. Numerical Methods and Analysis. McGraw- 

Hill, Inc., 1992. 



119 

[9] M. D. Cahill and A. C. Baker. Numerical simulation of the acoustic field of 

a phased-array medical ultrasound scanner. J. Acoust. Soc. Am., 104(3):1274- 

1283, 1998. 

[10] E. L. Carstensen, N. D. McKay, D. Delecki, and T. G. Muir. Absorption of finite 

amplitude ultrasound in tissues. Acustica, 51:116-123, 1982. 

[11] L. Chen, G. ter Haar, C. R. Hill, S. A. Eccles, and G. Box. Treatment of 

implanted liver tumors with focused ultrasound. Ultrasound in Med. & BioL, 

24(9):1475-1488, 1998. 

[12] W. C. Chew and Q. H. Liu. Perfectly matched layers for elastodynamics: A new 

absorbing boundary condition. J. Comp. Acoust., 4(4):341-359, 1996. 

[13] R. 0. Cleveland. Propagation of Sonic Booms Through a Real, Stratified Atmo- 

sphere. Ph.D. Dissertation, University of Texas, Austin, 1995. 

[14] M. G. Curley. Soft tissue temperature rise caused by scanned, diagnostic ultra- 

sound. IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 40(l):59-66, 1993. 

[15] C. A. Damianou, K. Hynynen, and X. Fan. Evaluation of accuracy of a theoret- 

ical model for predicting the necrosed tissue volume during focused ultrasound 

surgery. IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 42(2):182-187, 1995. 

[16] C. A. Damianou, K. Hynynen, and X. Fan. Evaluation of accuracy of a theoret- 

ical model for predicting the necrosed tissue volume during focused ultrasound 

surgery. IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 42:182-187, 1995. 

[17] C. A. Damianou, N. T. Sanghvi, F. J. Fry, and R. Maass-Moreno. Dependence 

of ultrasonic attenuation and absorption in dog soft tissues on temperature and 

thermal dose. J. Acoust. Soc. Am., 102(l):628-634, 1997. 



120 

[18] A. Derode, P. Roux, and M. Fink. Robust acoustic time reversal with high-order 

multiple scattering. Phys. Rev. Lett, 75:4206-4209, 1995. 

[19] P. F. Dobbins (ed.). Arrays and Beamforming in Sonar, Vol. 18. University of 

Bristol, U.K., 1996. 

[20] C. Dorme and M. Fink. Focusing in transmit-receive mode through inhomoge- 

neous media: The time reversal matched filter approach. J. Acoust Soc. Am., 

98:1155-1162, 1995. 

[21] D. R. Dowling. Phase-conjugate array focusing in a moving medium. J. Acoust. 

Soc. Am., 94:1716-1718, 1993. 

[22] D. R. Dowling and D. R. Jackson. Narrow-band performance of phase-conjugate 

arrays in dynamic random media. J. Acoust. Soc. Am., 91:3257-3277, 1992. 

[23] F. Dupenloup, J. Y. Chapelon, D. J. Cathignol, and 0. A. Sapozhnikov. Reduc- 

tion of the grating lobes of annular arrays used in focused ultrasound surgery. 

IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 43:991-998, 1996. 

[24] E. S. Ebbini and C. A. Cain. Multiple-focus ultrasound phased-array pattern 

synthesis: optimal driving-signal distributions for hyperthermia. IEEE Trans. 

Ultrason. Ferroelec. Freq. Contr., 43:991-998, 1996. 

[25] P. C. Etter. Underwater Acoustic Modeling. Elsevier Applied Science, New York, 

1991. 

[26] J. H. Ferziger and M. Peric. Computational Methods for Fluids Dynamics. 

Springer-Verlag, Berlin, 1996. 

[27] M. Fink. Time reversal of ultrasonic fields - part i: Basic principles. IEEE Trans. 

Ultrason. Ferroelec. Freq. Contr., 39:555-566, 1992. 



121 

[28] M. Fink. Time-reversal mirrors. J. Phys. D: Appl. Phys., 26:1333-1350, 1993. 

[29] F. J. Fry. Precision high intensity focused ultrasound machines for surgery. Am. 

J. Phys. Med., 37:152-156, 1958. 

[30] F. J. Fry and J. E. Barger. Acoustical properties of the human skull. J. Acoust. 

Soc. Am., 63(5):1576-1590, 1978. 

[31] Gerken. Mine Warface Technology. American Scientific Corp., 1989. 

[32] S. A. Goss, L. A. Frizzell, J. T. Kouzmanoff, J. M. Barich, and J. M. Yang. 

Sparse random ultrasound phased array for focal surgery. IEEE Trans. Ultrason. 

Ferroelec. Freq. Contr., 43:1111-1120, 1996. 

[33] S. A. Goss, R. L. Johnston, and F. Dunn. Comprehensive compilation of empirical 

ultrasonic properties of mammalian tissues. J. Acoust. Soc. Am., 62(2):423-457, 

1978. 

[34] S. A. Goss, R. L. Johnston, and F. Dunn. Comprehensive compilation of empirical 

ultrasonic properties of mammalian tissues, ii. J. Acoust. Soc. Am., 68(1):93—107, 

1980. 

[35] S. A. Goss and S.-I. Umemura. Concentric-ring and sector-vortex phased-array 

applicators for ultrasound hyperthermia. IEEE Trans. Microwave Theo, and 

Techniques, 34(5):542-551, 1986. 

[36] 0. S. Haddadin and E. S. Ebbini. Ultrasonic focusing through inhomogeneous 

media by application of the inverse scattering problem. J. Acoust. Soc. Am., 

104(l):313-325, 1998. 



122 

[37] I. M. Hallaj and R. 0. Cleveland. Fdtd simulation of finite-amplitude pressure 

and temperature fields from biolomedical ultrasound, to appear in Acoust. Res. 

Lett, [http://asa.aip.org/arlo/], 1(1):7-12, 1999. 

[38] I. M. Hallaj, R. 0. Cleveland, and S. G. Kargl. Two-dimensional nonlinear prop- 

agation of pulsed ultrasound through a tissue-like material. American Institute 

of Physics, 1998. 

[39] I. M. Hallaj, R. 0. Cleveland, S. G. Kargl, and R. A. Roy. FDTD simulation 

of transcranial focusing using ultrasonic phase-conjugate arrays, in Acoustical 

Imaging, Vol. 23, Lees and Ferrari (eds.). Plenum Press, 1997. 

[40] I. M. Hallaj, R. 0. Cleveland, R. A. Roy, and R. G. Holt. Coupled thermal- 

acoustic simulation results with temperature-dependent tissue parameters for 

therapeutic ultrasound. J. Acoust. Soc. Am., 104(3):1844, 1998. 

[41] I. M. Hallaj, S. G. Kargl, and R. A. Roy. Retrodirective array performance case 

studies and implications for mine countermeasures. in High Frequency Acoustics 

in Shallow Water, Pace et al. (eds.). NATO SACLANT Undersea Research 

Centre, 1997. 

[42] M. F. Hamilton and D. T. Blackstock. Nonlinear Acoustics. Academic Press, 

1998. 

[43] L. M. Hinkleman, D.-L. Liu, L. A. Metlay, and R. C. Waag. Measurements of 

ultrasonic pulse arrival time and energy level variations produced by propagation 

through abdominal wall. J. Acoust. Soc. Am., 95(1):530-541, 1994. 

[44] L. M. Hinkleman, D.-L. Liu, R. C. Waag, Q. Zhu, and B. D. Steinberg. Mea- 

surement and correction of ultrasonic pulse distortion produced by the human 

breast. J. Acoust. Soc. Am., 97(3):1958-1969, 1995. 



123 

[45] M. M. Horder, S. B. Barnett, G. J. Vella, M. J. Edwards, and A. K. Wood. In 

vivo heating of the guinea pig fetal brain by pulsed ultrasound and estimates of 

thermal index. Ultrasound in Med. & Biol, 24(9):1467-1474, 1998. 

[46] K. Hynynen. The threshold for thermally significant cavitation in dog's thigh 

muscle in vivo.  Ultrasound in Med. and Biol., 17(2):157—160, 1991. 

[47] K. Hynynen. Focused ultrasound surgery guided by MRI. Science and Medicine, 

3(5):62-71, 1996. 

[48] D. R. Jackson and D. R. Dowling. Phase conjugation in underwater acoustics. 

J. Acoust. Soc. Am., 89:171-181, 1991. 

[49] A. C. Kak and M. Slaney. Principles of Computerized Tomographie Imaging. 

IEEE Press, 1988. 

[50] R. Kosloff and D. Kosloff. Absorbing boundary conditions for wave propagation 

problems. J. Comp. Phys., 63:363-376, 1986. 

[51] P. K. Kundu. Fluid Mechanics. Academic Press, San Diego, 1990. 

[52] W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. 

Jackson. Phase conjugation in the ocean: Experimental demonstration of an 

acoustic time-reversal mirror. J. Acoust. Soc. Am., 103:25-40, 1998. 

[53] R. J. Lalonde and J. W. Hunt. Variable frequency field conjugate acoustic lenses 

for ultrasound hyperthermia. IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 

40:825-831, 1993. 

[54] R. J. Lalonde, A. Worthington, and J. W. Hunt. Field conjugate acoustic lenses 

for ultrasound hyperthermia. IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 

40:592-602, 1993. 



124 

[55] R. J. Last. Anatomy, Regional and Applied, 6th Edition. Longman Group, 1978. 

[56] R. Maass-Moreno and C. A. Damianou. Evaluation of accuracy of a theoreti- 

cal model for predicting the necrosed tissue volume during focused ultrasound 

surgery. IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 42(2):182-187, 1995. 

[57] T. D. Mast, L. M. Hinkelman, M. J. Orr, V. W. Sparrow, and R. C. Waag. Sim- 

ulation of ultrasonic pulse propagation through the abdominal wall. J. Acoust. 

Soc. Am., 102(2):1177-1190, 1997. 

[58] P. M. Meaney, R. L. Clarke, G. R. ter Haar, and I. H. Rivens. A 3-d finite- 

element model for computation of temperature profiles and regions of thermal 

damage during focused ultrasound surgery exposures. Ultrasound in Med. and 

Bioi, 24(9):1489-1499, 1998. 

[59] T. G. Muir and L. L. Mellenbruch. Reflection of finite-amplitude waves in a 

parametric array. J. Acoust. Soc. Am., 62:171-181, 1977. 

[60] G. Mur. Absorbing boundary conditions for the finite-difference approximation 

of the time-domain electromagnetic-field equations. IEEE Trans. Electromag. 

Compatibility, 23(4):377-382, 1981. 

[61] A. D. Pierce. Acoustics, An Introduction to its Physical Principles and Applica- 

tions. Acoustical Society of America, New York, 1991. 

[62] 0. T. V. Ramm and S. W. Smith. Beam steering with linear arrays. IEEE Trans. 

Biomed. Eng., 30:438-452, 1983. 

[63] N. T. Sanghvi and R. H. Hawes. High-intensity focused ultrasound. Exper. and 

Investig. Endoscopy, 4(2):383-395, 1994. 



125 

[64] A. Taflove. Review of the formulation and applications of the FDTD method for 

numerical modeling of electromagnetic wave interactions with arbitrary struc- 

tures. Wave Motion, 10:547-582, 1988. 

[65] G. ter Haar. Ultrasound focal beam surgery. Ultrasound in Med. and Biol, 

21(9):1089-1100, 1995. 

[66] J.-L. Thomas and M. Fink. Ultrasonic beam focusing through tissue inhomo- 

geneities with a time reversal mirror: Application to transskull therapy. IEEE 

Trans. Ultrason. Ferroelec. Freq. Contr., 43:1122-1129, 1996. 

[67] J.-L. Thomas, F. Wu, and M. Fink. Time reversal focusing applied to lithotripsy. 

Ultrasonic Imaging, 18:106-121, 1996. 

[68] J. N. Tj0tta and S. Tj0tta. Nonlinear equations of acoustics, with application to 

parametric acoustic arrays. J. Acoust. Soc. Am., 69:535-537, 1981. 

[69] D. H. Turnbull and F. S. Foster. Beam steering with pulsed two-dimensional 

transducer arrays. IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 38:320-333, 

1991. 

[70] H. Wang, E. Ebbini, and C. A. Cain. Effect of phase errors on field patterns 

generated by an ultrasound phased-array hyperthermia applicator. IEEE Trans. 

Ultrason. Ferroelec. Freq. Contr., 38:521-531, 1991. 

[71] D. J. Watmough, R. Lakshmi, F. Ghezzi, K. M. Quan, J. A. Watmough, 

E. Khizhnyak, T. N. Pashovkin, and A. P. Sarvazyan. The effect of gas bub- 

bles on the production of ultrasound hyperthermia at 0.75 mhz: A phantom 

study. Ultrasound in Med. and BioL, 19(3):231-241, 1993. 



126 

[72] Q. Wen. Spatial Diversity Equalization and Phase Conjugation Applied in Ocean 

Acoustic Communications. PhD Thesis, University of Washington, Seattle, 1991. 

[73] P. J. Westervelt. Parametric acoustic array. J. Acoust. Soc. Am., 35:535-537, 

1963. 

[74] J. Wu, J. D. Chase, Z. Zhu, and T. P. Holzapfel. Temperature rise in a tissue- 

mimicking material generated by unfocused and focused ultrasonic transducers. 

Ultrasound in Med. and Biol, 18(5):495-512, 1992. 

[75] J. Wu and G. Du. Temperature elevation in tissues generated by finite-amplitude 

tone bursts of ultrasound. J. Acoust. Soc. Am., 88:1562-1577, 1990. 

[76] K. S. Yee. Numerical solution of initial boundary value problems involving 

maxwell's equations in isotropic media. IEEE Trans. Antennas and Propaga- 

tion, 14(3):302-307, 1966. 

[77] S. Yongchen, D. Yanwu, T. Jie, and T. Zhensheng. Ultrasonic propagation pa- 

rameters in human tissues, in Proceedings of the IEEE Ultrasonics Symposium, 

1986. IEEE, 1986. 



127 

Appendix A 

THE FDTD METHOD AND OTHER NUMERICAL 

CONSIDERATIONS 

A.l    Solving the Wave Equation Using FDTD 

A numerical solution of the wave equation may be computed using the finite-difference 

time-domain (FDTD) method, which was introduced into use in its contemporary 

form by Yee [76]. The FDTD method provides accurate and detailed solutions down 

to the smallest scales of the problem. This strength of the FDTD method is also its 

greatest weakness, as the detailed calculations, called full wave simulations, require 

a large amount of computer storage space. Since the wavelengths in electromagnetic 

applications are large enough so that most systems can be represented by a few 

wavelengths, the FDTD method is widely used in the field of electromagnetics. With 

the development of faster and larger computers, however, more practical problems in 

acoustics will be solved using the FDTD method. 

A. 1.1    Approximating Partial Derivatives Using Finite Differences 

The FDTD method approximates the spatial and temporal partial derivatives with 

discrete differences obtained from Taylor series expansions 

fi    -fi +**-äT+2"ftr+3! dt* +--' (A'1} 
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about some node on the computational grid indexed in time by re and in space by i. 

In two spatial dimensions (i,j): 

^ = ^(P?+1-W+Prl) + 0(S1),    (centered) (A.2) 

= i(2tf - op?"1 +4Pr
2 - PTZ) + <W),    (right-sided) 

w = wm "23prl+34i?r 2"24pr3+Spr4" rf"5)+0(d?) 
Note that two versions of the second derivative were given in (A.2). The reason for 

this is that in the explicit method the future value of pressure is isolated to one 

side of the equation, and is solved for in terms of present and past values only. The 

time derivative appearing in the D'Alembertian in the wave equation was chosen to 

contain the future unknown pressure term in the FDTD solution. The other time 

derivatives, including the second order derivative in the nonlinear term were all done 

using right-sided finite differences, so they only contained known quantities. The 

reason for chosing the centered difference for the D'Alembertian time derivative is 

that the numerical solution behaved better with this combination. 

Note that as the order of the derivative increases, more instances of the pressure 

field are needed to be held in storage. So for example, the third order time derivative 

requires the current (re) pressure field, as well as the pressure fields at previous time 

steps (n - 1),... , (re - 5). This requirement is further increased if the order of the 

differencing were higher than 2. The particular formulae used to approximate the 

derivatives can be obtained by following one of several formal methods [8]. The exact 

form will differ if the differencing is to be centered or right or left handed, meaning that 

the expression will contain indices around re or to the left or right of re. Typically, time 

derivatives are formulated so that only the known pressures from previous time steps 
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are required for the calculation, as the explicit method steps forward and calculates 

£>"+* at each time step. This technique is called an explicit method. The first derivative 

can be used to calculate the difference expressions for higher order derivatives to the 

same accuracy by applying the first derivative expression recursively. The spatial 

differencing is similar, but is done using centered differences, and to fourth order 

accuracy, 0(SX)4: 

dp 1 
dx 12^(-rf+2J + 8PJ+IJ - 8tf-ij + tf-aj), (A.3) 

0   *   I^fej + 16^J-30^ + 16^J-^-2J)- (A.4) 

The above expressions can be found in Ferziger and Peric [26]. 

Using these centered-difference expressions we can obtain the third derivative by 

using the first derivative expression as an operator on the second derivative, yielding 

the centered expression to fourth order, 

^=14W(^+4"2^+3 + 158fe (A.5) 
- 248&+1 + 248&_! - 158&-2 + 24&_3 - <fc_4) + 0{8$). 

Turning (A.5) into a right-sided finite difference expression can be done if the original 

fourth-order derivatives are right-sided, but was not used because it requires excessive 

run time. One point to make is that the order of the method does not imply or 

guarantee accuracy, it only indicates how rapidly the truncation errors decrease with 

decreasing 8X or 8t. For this reason it is possible for a second-order solution to be 

more accurate than a fourth-order solution. While second-order time differencing was 

used exclusively in this study, both second and fourth-order spatial differencing was 

used. The highly-steepened waveforms in the nonlinear time reversal study behaved 

better with fourth order differencing in space. Less numerical dispersion (numerical 

propagation of different wavenumbers at different velocities on the grid) was observed 

when the spatial grid spacing 5X was made as small as possible, and the fourth-order 

differencing was used. 



130 

The need to reduce spatial grid size leads to a requirement to reduce the time 

grid spacing accordingly for stability reasons. In Cartesian coordinates, the explicit 

finite-difference solution of the lossless linear wave equation is stable only if 

cm„*«<(i + i). (A.6) 

This is a statement that no wave propagation information can travel across more than 

8X in a single time step 8t. The stability criterion becomes much more complicated 

for the absorbing case, and simple Von Neumann stability analysis is not possible for 

the nonlinear wave equation, and is beyond the scope of this study. However, it was 

empirically observed that a trade off between a and 8t exists in the stability space for 

the absorbing wave equation. In other words, increasing a necessitates increasing 8t 

for stability. Perhaps the only positive side-effect of the instability issue which plagues 

explicit methods is that once a code is stable, its output is generally convergent. In 

our studies we compared second and fourth-order spatial differencing and found very 

good agreement. A full investigation of the dispersion and the stability characteristics 

of the FDTD codes used is beyond the scope of this study. Numerical dispersion will 

occur in all finite difference codes on uniform grids [64], but its effect is minimized 

by proper selection of the spatial grid size relative to the dominant wavelength. This 

"magic size" 5t as it is referred to by Tafiove turns out to be when equation (A.6) has 

an equality sign for the relationship. 

This study also used implicit solutions of the wave equation, and the results were 

similar to the explicit results. However, the implicit solutions require more care to 

ensure convergence, as large 8t will gradually reduce accuracy. By contrast increasing 

8t in the explicit solutions will lead to instability and failure of the computer code. 

A.2    Modeling the Sources 

Both discrete arrays and continuous (discretized) extended sources can be modeled 

with the techniques used in this study.    To model an array having inter-element 
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separation larger than the spatial grid size a gap in the placement of point sources is 

allowed from which no sound will emanate. To model a continuous extended source, 

all grid points lying on the source are driven in phase. An extended source described 

by many sources much smaller than a wavelength located along the surface of the 

simulated extended source can be expected to collectively yield a wavefront similar 

to that of the extended source by Huygens' construction [61]. 
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Figure A.l: The layout of the 2-D simulations in (a) Cartesian coordinates and (b) 
polar cylindrical coordinates. The computational domain is shaded. The boundary 
conditions used at the edges of the domain are either absorbing boundary conditions 
(ABC) or reflected boundary conditions (RBC). 

A.2.1    Boundary Conditions 

Two types of boundary conditions are described in this section. The absorbing bound- 

ary condition to prevent artificial wave reflections from the edges of computational 

domains, and the reflected boundary condition to enforce symmetry about a boundary 

which lies on an axis of symmetry. Since the spherical bowl sources do not guarantee 
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that the discretized point sources lie on exact grid positions in rectilinear coordinates, 

the nearest grid location was chosen in this case. 

Absorbing Boundary Conditions 

Since numerical simulations are carried out on finite computational domains, the 

issue of how to handle waves reaching the outer edges of the domains needs to be 

addressed. Untreated, acoustic waves reaching the edge of a computational domain 

would be reflected by the artificial boundaries of the simulation. In order to avoid 

this unnatural behavior when modeling extended regions in space, it is common to 

use absorbing boundary conditions (ABC's) along these edges. 

Several techniques are known which prevent waves incident on domain boundaries 

from reflecting. We describe two different techniques here which were used successfully 

with the FDTD solution of the acoustic wave equation. The first involves placing an 

absorbing boundary layer along the edges of the computational domain in such a way 

as to minimize reflected wave amplitudes. This technique is described in Kosloff and 

Kosloff [50] for a wave equation in 2-D, 

d2P Msh^U. 27-^ - 72p + Source. (A.7) 

This ABC requires padding the computational domain with at least 10 to 20 highly 

absorbing grid cells, on which no useful calculations can be performed due to the 

artifice of the padding. Further, the slope of the profile of 7 is a compromise between 

two evils: on one hand if the profile is too shallow, a wider padded region is necessary 

to absorb the wave. On the other hand if the absorbing region has a very steep profile 

the wave will be partially reflected by the change in impedance, depending on the 

wavelength of the wave compared to the width of the transition region. Which means 

that the absorbing boundary layer ABC results in different reflection coefficients for 

different incident frequencies, and would have to be optimized for best effect. A profile 



133 

for 7 which produces good results is 

7 = {70/cosh2(crn), (A.8) 

where U0 is a constant describing the magnitude of the absorption near the edge of 

the domain, and a controls the slope of the profile, and n is the number of grid cells 

over which the transition takes place from the nonabsorbing interior to the edge. 

The second ABC implemented successfully in this study uses a radiation condition 

normal to the boundaries and was first described for the FDTD method by Mur [60], 

and is commonly known as Mur's ABC. This is the ABC of choice for the simulations 

presented in this dissertation. Mur's first-order ABC uses the first-order radiation 

condition 

dx     Co dt 

along the x = 0 boundary, and 

= 0 (A.9) 
a;=0 

dx     c0 dt 
= 0 (A.10) 

along the x = xmax boundary. The radiation conditions ensure that waves normally 

incident upon the boundaries are absorbed. However, for obliquely-incident waves the 

reflection coefficient increases as the direction of incidence departs from normal. For 

grazing incidence, the first-order Mur ABC's are very inefficient and a second-order 

Mur ABC may be used [60]. 

Recently, a type of ABC known as the perfectly matched layer method (PML) has 

been introduced, and is considered to be the most effective of all known ABC's [12]. 

The method is usually associated with spectral methods, and its implementation is 

more complicated than the other ABC's described above. 

Reflected Boundary Conditions 

Another type of boundary condition used in this study is the reflected boundary 

condition (RBC). This is the result of truncating the computational domain at a 
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region of symmetry, where two identical but opposing waves would meet. In our case 

we assumed azimuthal symmetry about the central axis of bowl transducers. Thus 

only one half of the 2-D (x r) plane need be computed, and the computational domain 

is r = [0,rmax], x = [0,xmax], as shown in Figure A.l is used to obtain solutions on 

r = [-rmax,rmax], x = [0,xmax]. This reduces the required storage space by half, and 

reduces the execution time. For such cases the boundary condition along the r = 0 

edge is 

dr        ' (A.ll) 

or 

As a natural result, the term containing 1/r in the Laplacian for polar coordinates is 

dropped, since it is multiplied by dp'/dr. 

Other types of boundary conditions 

The RBC is closely related to the periodic boundary condition, which causes waves 

reaching and exiting one face of the computational domain to re-enter the computa- 

tional domain from the opposite end. For example, if computer memory is limited we 

can "reuse" available space by allowing the wave to enter from the left of the domain 

immediately upon exiting from the right side of the domain. In both the reflected 

and the periodic boundary conditions, the variables near the edges of the domain 

are replaced by values taken from the adjacent and opposite sides of the boundary 

respectively. 

A.3    Simulation Challenges 

Ideally, computer simulations of acoustic fields would provide exact information re- 

garding all field variables (pressure, velocity, etc.) over any size computational do- 

main for any length of time desired. Realistically of course, computer resources such 
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as memory and execution time limit the size of any simulation. Several simulation 

parameters determine the extent of the maximum spatial domain and time span at- 

tainable. 

The primary parameter that defines the size of a simulation in acoustics is the 

number of spatial dimensions and the number of wavelengths per dimension. Until 

recently, it was not possible to simulate realistic wave propagation problems in three 

dimensions over ranges greater than a few tens of wavelengths. Even today, such 

three-dimensional simulations are beyond the reach of most engineering workstations 

because the memory required to hold the variables being calculated is proportional 

to the total number of spatial grid points used. So for a n-dimensional simulation 

having N\ wavelengths on a side in the computational domain, and iV7 grid points 

per wavelength, the total number, Ntotah °f data points needed to hold one scalar 

field quantity at any instant in time is 

Ntotal = m(NxN^n, (A.12) 

where m is an integer usually between 3 and 7, depending on the highest order of 

the time derivatives taken on the unknown in the wave equation, and the degree 

of accuracy used in the time differencing. For a 3-dimensional simulation, having 10 

wavelengths on a side of a computational cube, each wavelength sampled by a modest 

15 grid points, Ntotai is greater than 107 when the linear wave equation is solved to 

second order accuracy in time. 

For the above reasons, unless the three-dimensionality significantly contributes to 

the qualitative yield of the simulation, two- and sometimes one-dimensional simula- 

tions are the choice for most research problems. Another item to note is that while 

iV7 of 15 to 25 is reasonable for most sinusoidal waves, this number must be increased 

to adequately sample wavefronts with steep gradients, such as shock waves. 
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